研究生: |
邱仕文 Chiu, Shih-Wen |
---|---|
論文名稱: |
微小化電子鼻之設計:系統、感測器、處理晶片 Design of a Miniature Electronic Nose: System, Sensors, and Processing Chips |
指導教授: |
鄭桂忠
Tang, Kea-Tiong |
口試委員: |
林啟萬
趙昌博 羅錦興 李夢麟 鄭桂忠 陳新 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 電子鼻 、微感測器陣列 、佈奈米碳管以及聚合物 、半數位式的適應性介面電路 、電子鼻信號處理晶片 、晶片電子鼻 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子鼻在日常生活中應用的潛力極大,但目前電子鼻裝置大多體積龐大且價格昂貴,進而限制了電子鼻的發展性和應用性。本研究設計微型化電子鼻系統,使用先進的集成電路技術來完善。首先,提出仿生雙層塗佈奈米碳管以及聚合物的微型化氣體感測器陣列,雙層塗佈技術提升微型化奈米碳管以及聚合物感測器的穩定性,此感測陣列俱備功耗低、體積小等特性。半數位式的適應性介面電路,適用於積體電路製作,用於消除感測器的基線飄移。電子鼻信號處理晶片整合了擷取電路(包含可適應的介面電路)和處理核心,晶片採1P6M 0.18μm CMOS製程,僅佔4.02mm2晶片面積,在類比1V和數位1.8V的操作電壓下,功率僅消耗1.05mW;進一步利用微型化感測器陣列和電子鼻信號處理晶片,架構一個微型的電子鼻系統雛型。此外,提出一個全整合高效能的晶片電子鼻,晶片整合晶片上的感測器陣列,第一個推出用於呼吸器相關肺炎快速診斷的電子鼻系統晶片,此晶片片採1P9M 90nm CMOS製程,僅佔10.49mm2晶片面積,在0.5V的操作電壓下,僅消耗1.27毫瓦。
[1] Axel, R.; Buck, L.B. Odorant Receptors and the Organization of the Olfactory System. Available online: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2004/press.html (accessed on 7 August 2013).
[2] Sankaran, S.; Khot, L.R.; Panigrahi, S. Biology and applications of olfactory sensing system: A review. Sens. Actuators B Chem. 2012, 171–172, 1–17.
[3] Harwood, D. Something in the air [electronic nose]. IEE Rev. 2001, 47, 10–14.
[4] Zhang, L.; Tian, F.; Nie, H.; Dang, L.; Li, G.; Ye, Q.; Kadri, C. Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actuators B Chem. 2012, 174, 114–125.
[5] Dragonieri, S.; van der Schee, M.P.; Massaro, T.; Schiavulli, N.; Brinkman, P.; Pinca, A.; Carratú, P.; Spanevello, A.; Resta, O.; Musti, M.; et al. An electronic nose distinguishes exhaled breath of patients with Malignant Pleural Mesothelioma from controls. Lung Cancer 2012, 75, 326–331.
[6] Guo, D.; Zhang, D.; Li, N.; Zhang, L.; Yang, J. A novel breath analysis system based on electronic olfaction. IEEE Trans. Biomed. Eng. 2010, 57, 2753–2763.
[7] Wilson, A.D.; Baietto, M. Advances in electronic-nose technologies developed for biomedical applications. Sensors 2011, 11, 1105–1176.
[8] Haddi, Z.; Amari, A.; Alami, H.; El Bari, N.; Llobet, E.; Bouchikhi, B. A portable electronic nose system for the identification of cannabis-based drugs. Sens. Actuators B Chem. 2011, 155, 456–463.
[9] Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; Proietti, E.; D’Amico, A. The evaluation of quality of post-harvest oranges and apples by means of an electronic nose. Sens. Actuators B Chem. 2001, 78, 26–31.
[10] Concina, I.; Falasconi, M.; Sberveglieri, V. Electronic noses as flexible tools to assess food quality and safety: Should we trust them? IEEE Sens. J. 2012, 12, 3232–3237.
[11] Macías, M.; Manso, A.; Orellana, C.; Velasco, H.; Caballero, R.; Chamizo, J. Acetic acid detection threshold in synthetic wine samples of a portable electronic nose. Sensors 2012, 13, 208–220.
[12] Ampuero, S.; Bosset, J.O. The electronic nose applied to dairy products: A review. Sens. Actuators B Chem. 2003, 94, 1–12.
[13] Berna, A. Metal oxide sensors for electronic noses and their application to food analysis. Sensors 2010, 10, 3882–3910.
[14] Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors 2011, 11, 4744–4766.
[15] Hasan, N.; Ejaz, N.; Ejaz, W.; Kim, H. Meat and fish freshness inspection system based on odor sensing. Sensors 2012, 12, 15542–15557.
[16] Gardner, J.W.; Shin, H.W.; Hines, E.L.; Dow, C.S. An electronic nose system for monitoring the quality of potable water. Sens. Actuators B Chem. 2000, 69, 336–341.
[17] Baby, R.E.; Cabezas, M.; Walsöe de Reca, E.N. Electronic nose: A useful tool for monitoring environmental contamination. Sens. Actuators B Chem. 2000, 69, 214–218.
[18] Ho, C.; Hughes, R. In-situ chemiresistor sensor package for real-time detection of volatile organic compounds in soil and groundwater. Sensors 2002, 2, 23–34.
[19] Goschnick, J.; Harms, M. Landmine detection with an electronic nose mounted on an airship. NATO Sci. Ser. 2002, 66, 83–91.
[20] Wilson, A.D. Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment. Procedia Technol. 2012, 1, 453–463.
[21] Tsow, F.; Forzani, E.; Rai, A.; Rui, W.; Tsui, R.; Mastroianni, S.; Knobbe, C.; Gandolfi, A.J.; Tao, N.J. A Wearable and wireless sensor system for real-time monitoring of toxic environmental volatile organic compounds. IEEE Sens. J. 2009, 9, 1734–1740.
[22] Moncrieff, R.W. An instrument for measuring and classifying odours. J. Appl. Physiol. 1961, 16, 742–749.
[23] Wilkens, W.F.; Hartman, J.D. An electronic analog for the olfactory processesa. J. Food Sci. 1964, 29, 372–378.
[24] Buck, T.M.; Allen, F.G.; Dalton, M. Detection of Chemical Species by Surface Effects on Metals and Semiconductors. In Surface Effects in Detection; Spartan Books Inc.: Washington, DC, USA, 1965.
[25] Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355.
[26] Gardner, J.W.; Bartlett, P.N.; Dodd, G.H.; Shurmer, H.V. Pattern Recognition in the Warwick Electronic Nose. In Proceedings of the 8th International Congress of European Chemoreception Research Organisation, University of Warwick, UK, 18–22 July 1988.
[27] Gardner, J. W.; Bartlett, P. N. Sensors and Sensory Systems for an Electronic Nose. In Proceedings of the NATO Advanced Research Workshop; Reykjavik, Iceland, 5–8 August 1991.
[28] Nagle, H.T.; Gutierrez-Osuna, R.; Schiffman, S.S. The how and why of electronic noses.
IEEE Spectr. 1998, 35, 22–31.
[29] Gopel, W.; Weiss, T. Design for smelling. IEEE Spectr. 1998, 35, 32–34.
[30] Mielle, P.; Marquis, F.; Latrasse, C. Electronic noses: Specify or disappear. Sens. Actuators B Chem. 2000, 69, 287–294.
[31] Brattoli, M.; de Gennaro, G.; de Pinto, V.; Demarinis Loiotile, A.; Lovascio, S.; Penza, M. Odour detection methods: Olfactometry and chemical sensors. Sensors 2011, 11, 5290–5322.
[32] Aishima, T. Aroma discrimination by pattern recognition analysis of responses from semiconductor gas sensor array. J. Agric. Food Chem. 1991, 39, 752–756.
[33] Hoffheins, B. Using Sensor Arrays and Pattern Recognition to Identify Organic Compounds. M.Sc. Thesis, University of Tennessee, Knoxville, TX, USA, June 1989.
[34] Abe, H.; Yoshimura, T.; Kanaya, S.; Takahashi, Y.; Miyashita, Y.; Sasaki, S.-I. Automated
odor-sensing system based on plural semiconductor gas sensors and computerized pattern recognition techniques. Anal. Chim. Acta 1987, 194, 1–9.
[35] Shurmer, H.V.; Gardner, J.W.; Corcoran, P. Intelligent vapour discrimination using a composite 12-element sensor array. Sens. Actuators B Chem. 1990, 1, 256–260.
[36] Pearce, T.C.; Gardner, J.W.; Friel, S.; Bartlett, P.N.; Blair, N. Electronic nose for monitoring the flavour of beers. Analyst 1993, 118, 371–377.
[37] Persaud, K.C. Electronic gas and odour detectors that mimic chemoreception in animals. TRAC Trends Anal. Chem. 1992, 11, 61–67.
[38] Slater, J.M.; Paynter, J.; Watt, E.J. Multi-layer conducting polymer gas sensor arrays for olfactory sensing. Analyst 1993, 118, 379–384.
[39] Freund, M.S.; Lewis, N.S. A chemically diverse conducting polymer-based “electronic nose”. Proc. Natl. Acad. Sci. USA 1995, 92, 2652–2656.
[40] Slater, J.M.; Paynter, J. Prediction of gas sensor response using basic molecular parameters. Analyst 1994, 119, 191–195.
[41] Slater, J.M.; Watt, E.J. Examination of ammonia-poly(pyrrole) interactions by piezoelectric and conductivity measurements. Analyst 1991, 116, 1125–1130.
[42] Polikar, R.; Shinar, R.; Honavar, V.; Udpa, L.; Porter, M.D. Detection and Identification of Odorants Using an Electronic Nose. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001; pp. 3137–3140.
[43] Ballantine, D.S.; Rose, S.L.; Grate, J.W.; Wohltjen, H. Correlation of surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition. Anal. Chem. 1986, 58, 3058–3066.
[44] Baltes, H.; Lange, D.; Koll, A. The electronic nose in Lilliput. IEEE Spectr. 1998, 35, 35–38.
[45] Briand, D.; van der Schoot, B.; de Rooij, N.F.; Sundgren, H.; Lundstrom, I. A low-power micromachined MOSFET gas sensor. J. Microelectromech. Syst. 2000, 9, 303–308.
[46] Dickinson, T.A.; Michael, K.L.; Kauer, J.S.; Walt, D.R. Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal. Chem. 1999, 71, 2192–2198.
[47] Di Natale, C.; Martinelli, E.; Paolesse, R.; D’Amico, A.; Filippini, D.; Lundström, I. An artificial olfaction system based on the optical imaging of a large array of chemical reporters. Sens. Actuators B Chem. 2009, 142, 412–417.
[48] Dittmann, B.; Nitz, S. Strategies for the development of reliable QA/QC methods when working with mass spectrometry-based chemosensory systems. Sens. Actuators B Chem. 2000, 69,
253–257.
[49] Pérez Pavón, J.L.; del Nogal Sánchez, M.; Pinto, C.G.; Fernández Laespada, M.E.; Cordero, B.M.; Peña, A.G. Strategies for qualitative and quantitative analyses with mass spectrometry-based electronic noses. TrAC Trends Anal. Chem. 2006, 25, 257–266.
[50] Gursoy, O.; Somervuo, P.; Alatossava, T. Preliminary study of ion mobility based electronic nose MGD-1 for discrimination of hard cheeses. J. Food Eng. 2009, 92, 202–207.
[51] Chang, J.B.; Subramanian, V. Electronic noses sniff success. IEEE Spectr. 2008, 45, 50–56.
[52] Korotcenkov, G.; Stetter, J.R. Chemical Gas Mixture Analysis and the Electronic Nose: Current Status, Future Trends. In Chemical Sensors Comprehensive Sensor Technologies: Volume 6 Chemical Sensors Applications; Korotcenkov, G., Ed.; Momentum Press: New York, NY, USA, 2011.
[53] Rock, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725.
[54] Wilson, A.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148.
[55] Shurmer, H.V. An electronic nose: A sensitive and discriminating substitute for a mammalian olfactory system. IEE Proc. G Circuits Devices Syst. 1990, 137, 197–204.
[56] Perera, A.; Sundic, T.; Pardo, A.; Gutierrez-Osuna, R.; Marco, S. A portable electronic nose based on embedded PC technology and GNU/Linux: Hardware, software and applications. IEEE Sens. J. 2002, 2, 235–246.
[57] Chueh, H.-T.; Hatfield, J.V. A real-time data acquisition system for a hand-held electronic nose (H2EN). Sens. Actuators B Chem. 2002, 83, 262–269.
[58] Botre, B.A.; Gharpure, D.C.; Shaligram, A.D. Embedded electronic nose and supporting software tool for its parameter optimization. Sens. Actuators B Chem. 2010, 146, 453–459.
[59] Fuchs, S.; Strobel, P.; Siadat, M.; Lumbreras, M. Evaluation of unpleasant odor with a portable electronic nose. Mater. Sci. Eng. C 2008, 28, 949–953.
[60] Zhang, L.; Tian, F.; Liu, S.; Guo, J.; Hu, B.; Ye, Q.; Dang, L.; Peng, X.; Kadri, C.; Feng, J. Chaos based neural network optimization for concentration estimation of indoor air contaminants by an electronic nose. Sens. Actuators A Phys. 2013, 189, 161–167.
[61] Hatfield, J.V.; Neaves, P.; Hicks, P.J.; Persaud, K.; Travers, P. Towards an integrated electronic nose using conducting polymer sensors. Sens. Actuators B Chem. 1994, 18, 221–228.
[62] Hsieh, H.-Y.; Tang, K.-T. VLSI implementation of a bio-inspired olfactory spiking neural network. IEEE Trans. Neur. Netw. Learn. Syst. 2012, 23, 1065–1073.
[63] Chen, H.T.; Ng, K.T; Bermak, A.; Law, M.K.; Martinez, D. Spike latency coding in biologically inspired microelectronic nose. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 160–168.
[64] Craven, M.A.; Gardner, J.W.; Bartlett, P.N. Electronic noses—development and future prospects. TrAC Trends Anal. Chem. 1996, 15, 486–493.
[65] Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 210–211.
[66] Doty, R.L. Olfaction. Annu. Rev. Psychol. 2001, 52, 423–452.
[67] Lammerink, T.S.J.; Dijkstra, F.; Houkes, Z.; van Kuijk, J. Intelligent gas-mixture flow sensor. Sens. Actuators A Phys. 1995, 47, 380–384.
[68] Firestein, S. How the olfactory system makes sense of scents. Nature 2001, 413, 211–218.
[69] Breer, H. Olfactory receptors: Molecular basis for recognition and discrimination of odors. Anal. Bioanal. Chem. 2003, 377, 427–433.
[70] Xiaobo, Z.; Jiewen, Z.; Shouyi, W.; Xingyi, H. Vinegar classification based on feature extraction and selection from tin oxide gas sensor array data. Sensors 2003, 3, 101–109.
[71] Panigrahi, S.; Balasubramanian, S.; Gu, H.; Logue, C.M.; Marchello, M. Design and development of a metal oxide based electronic nose for spoilage classification of beef. Sens. Actuators B Chem. 2006, 119, 2–14.
[72] Depari, A.; Falasconi, M.; Flammini, A.; Marioli, D.; Rosa, S.; Sberveglieri, G.; Taroni, A. A new low-cost electronic system to manage resistive sensors for gas detection. IEEE Sens. J. 2007, 7, 1073–1077.
[73] Hossein-Babaei, F.; Hosseini-Golgoo, S.M. Analyzing the responses of a thermally modulated gas sensor using a linear system identification technique for gas diagnosis. IEEE Sens. J. 2008, 8, 1837–1847.
[74] Im, J.; Sengupta, S.K.; Baruch, M.F.; Granz, C.D.; Ammu, S.; Manohar, S.K.; Whitten, J.E. A hybrid chemiresistive sensor system for the detection of organic vapors. Sens. Actuators B Chem. 2011, 156, 715–722.
[75] Ponzoni, A.; Depari, A.; Comini, E.; Faglia, G.; Flammini, A.; Sberveglieri, G. Exploitation of a low-cost electronic system, designed for low-conductance and wide-range measurements, to control metal oxide gas sensors with temperature profile protocols. Sens. Actuators B Chem. 2012, 175, 149–156.
[76] Szczurek, A.; Maciejewska, M.; Bodzoj, L.; Flisowska-Wiercik, B. A concept of a sensor system for determining composition of organic solvents. IEEE Sens. J. 2010, 10, 924–933.
[77] Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G.C.; Nicoletti, S.; Dori, L. An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens. Actuators B Chem. 2004, 101, 39–46.
[78] Song, K.; Wang, Q.; Liu, Q.; Zhang, H.; Cheng, Y. A wireless electronic nose system using a Fe2o3 gas sensing array and least squares support vector regression. Sensors 2011, 11, 485–505.
[79] Kim, Y.S.; Ha, S.-C.; Yang, Y.; Kim, Y.J.; Cho, S.M.; Yang, H.; Kim, Y.T. Portable electronic nose system based on the carbon black–polymer composite sensor array. Sens. Actuators B Chem. 2005, 108, 285–291.
[80] Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198.
[81] Lee, D.-S.; Duk-Dong, L.; Sang-Woo, B.; Minho, L.; Kim, Y. T. SnO2 gas sensing array for combustible and explosive gas leakage recognition. IEEE Sens. J. 2002, 2, 140–149.
[82] Lee, D.-S.; Ban, S.-W.; Lee, M.; Lee, D.-D. Micro gas sensor array with neural network for recognizing combustible leakage gases. IEEE Sens. J. 2005, 5, 530–536.
[83] Afridi, M.Y.; Suehle, J.S.; Zaghloul, M.E.; Berning, D.W.; Hefner, A.R.; Cavicchi, R.E.; Semancik, S.; Montgomery, C.B.; Taylor, C.J. A monolithic CMOS microhotplate-based gas sensor system. IEEE Sens. J. 2002, 2, 644–655.
[84] Wilson, D.M.; Hoyt, S.; Janata, J.; Booksh, K.; Obando, L. Chemical sensors for portable, handheld field instruments. IEEE Sens. J. 2001, 1, 256–274.
[85] Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502.
[86] Al-Khalifa, S.; Maldonado-Bascon, S.; Gardner, J.W. Identification of CO and NO2 using a thermally resistive microsensor and support vector machine. IEE Proc. Sci. Measur. Technol. 2003, 150, 11–14.
[87] Harris, P.D.; Arnold, W.M.; Andrews, M.K.; Partridge, A.C. Resistance characteristics of conducting polymer films used in gas sensors. Sens. Actuators B Chem. 1997, 42, 177–184.
[88] Watson, J. The tin oxide gas sensor and its applications. Sens. Actuators 1984, 5, 29–42.
[89] Ponzoni, A.; Comini, E.; Concina, I.; Ferroni, M.; Falasconi, M.; Gobbi, E.; Sberveglieri, V.; Sberveglieri, G. Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR lab, Brescia (Italy) in the Security and food quality fields. Sensors 2012, 12, 17023–17045.
[90] Taurino, A.; Capone, S.; Distante, C.; Epifani, M.; Rella, R.; Siciliano, P. Recognition of olive oils by means of an integrated sol–gel SnO2 electronic nose. Thin Solid Films 2002, 418, 59–65.
[91] Sysoev, V.; Kiselev, I.; Frietsch, M.; Goschnick, J. Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray. Sensors 2004, 4, 37–46.
[92] Lee, H.Y.; Moon, S.; Park, S.J.; Lee, J.; Park, K.H.; Kim, J. Micro-machined resistive micro-heaters for high temperature gas sensing applications. Electron. Lett. 2008, 44, 1460–1461.
[93] Briand, D.; Colin, S.; Courbat, J.; Raible, S.; Kappler, J.; de Rooij, N.F. Integration of MOX gas sensors on polyimide hotplates. Sens. Actuators B Chem. 2008, 130, 430–435.
[94] Gouma, P.; Kalyanasundaram, K.; Xiao, Y.; Stanacevic, M.; Lisheng, W. Nanosensor and breath analyzer for ammonia detection in exhaled human breath. IEEE Sens. J. 2010, 10, 49–53.
[95] Binions, R.; Afonja, A.; Dungey, S.; Lewis, D.W.; Parkin, I.P.; Williams, D.E. Discrimination effects in zeolite modified metal oxide semiconductor gas sensors. IEEE Sens. J. 2011, 11, 1145–1151.
[96] Lu, C.-Y.; Chang, S.-P.; Chang, S.-J.; Hsueh, T.-J.; Hsu, C.-L.; Chiou, Y.; Chen, I.-C. ZnO nanowire-based oxygen gas sensor. IEEE Sens. J. 2009, 9, 485–489.
[97] Ponzoni, A.; Baratto, C.; Bianchi, S.; Comini, E.; Ferroni, M.; Pardo, M.; Vezzoli, M.; Vomiero, A.; Faglia, G.; Sberveglieri, G. Metal oxide nanowire and thin-film-based gas sensors for chemical warfare simulants detection. IEEE Sens. J. 2008, 8, 735–742.
[98] Sberveglieri, G.; Concina, I.; Comini, E.; Falasconi, M.; Ferroni, M.; Sberveglieri, V. Synthesis and integration of tin oxide nanowires into an electronic nose. Vacuum 2012, 86, 532–535.
[99] Chen, P.-C.; Shen, G.; Zhou, C. Chemical sensors and electronic noses based on 1-d metal oxide nanostructures. IEEE Trans. Nanotechnol. 2008, 7, 668–682.
[100] Arnold, C.; Harms, M.; Goschnick, J. Air quality monitoring and fire detection with the Karlsruhe electronic micronose KAMINA. IEEE Sens. J. 2002, 2, 179–188.
[101] Kumar, R.; Das, R.R.; Mishra, V.N.; Dwivedi, R. A neuro-fuzzy classifier-cum-quantifier for analysis of alcohols and alcoholic beverages using responses of thick-film tin oxide gas sensor array. IEEE Sens. J. 2010, 10, 1461–1468.
[102] Heule, M.; Gauckler, L.J. Miniaturised arrays of tin oxide gas sensors on single microhotplate substrates fabricated by micromolding in capillaries. Sens. Actuators B Chem. 2003, 93, 100–106.
[103] Bin, G.; Bermak, A.; Chan, P.C.H.; Gui-Zhen, Y. An integrated surface micromachined convex microhotplate structure for tin oxide gas sensor array. IEEE Sens. J. 2007, 7, 1720–1726.
[104] Guo, B.; Bermak, A.; Chan, P.; Yan, G.-Z. Characterization of integrated tin oxide gas sensors with metal additives and ion implantations. IEEE Sens. J. 2008, 8, 1397–1398.
[105] Benkstein, K.D.; Raman, B.; Montgomery, C.B.; Martinez, C.J.; Semancik, S. Microsensors in dynamic backgrounds: Toward real-time breath monitoring. IEEE Sens. J. 2010, 10, 137–144.
[106] Kiselev, I.; Sommer, M.; Mann, J.K.; Sysoev, V.V. Employment of electric potential to build a gas-selective response of metal oxide gas sensor array. IEEE Sens. J. 2010, 10, 849–855.
[107] Shi, M.; Bermak, A.; Belhouari, S.B.; Chan, P.C.H. Gas identification based on committee machine for microelectronic gas sensor. IEEE Trans. Instrum. Measur. 2006, 55, 1786–1793.
[108] Kumar, R.; Das, R.R.; Mishra, V.N.; Dwivedi, R. A radial basis function neural network classifier for the discrimination of individual odor using responses of thick-film tin-oxide sensors. IEEE Sens. J. 2009, 9, 1254–1261.
[109] Aleixandre, M.; Lozano, J.; Gutiérrez, J.; Sayago, I.; Fernández, M.J.; Horrillo, M.C. Portable e-nose to classify different kinds of wine. Sens. Actuators B Chem. 2008, 131, 71–76.
[110] Adhikari, B.; Majumdar, S. Polymers in sensor applications. Progr. Polym. Sci. 2004, 29, 699–766.
[111] Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307.
[112] Unde, S.; Ganu, J.; Radhakrishnan, S. Conducting polymer-based chemical sensor: Characteristics and evaluation of polyaniline composite films. Adv. Mater. Opt. Electron. 1996, 6, 151–157.
[113] Neaves, P.I.; Hatfield, J.V. Current-mode multiplexer for interrogating resistive sensor arrays. Electron. Lett. 1994, 30, 942–943.
[114] Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008, 614, 1–26.
[115] Shurmer, H.V.; Corcoran, P.; Gardner, J.W. Integrated arrays of gas sensors using conducting polymers with molecular sieves. Sens. Actuators B Chem. 1991, 4, 29–33.
[116] Gardner, J.W.; Vidic, M.; Ingleby, P.; Pike, A.C.; Brignell, J.E.; Scivier, P.; Bartlett, P.N.; Duke, A.J.; Elliott, J.M. Response of a poly(pyrrole) resistive micro-bridge to ethanol vapour. Sens. Actuators B Chem. 1998, 48, 289–295.
[117] Lonergan, M.C.; Severin, E.J.; Doleman, B.J.; Beaber, S.A.; Grubbs, R.H.; Lewis, N.S. Array-based vapor sensing using chemically sensitive, carbon black−polymer resistors. Chem. Mater. 1996, 8, 2298–2312.
[118] Martin, J.E.; Anderson, R.A.; Odinek, J.; Adolf, D.; Williamson, J. Controlling percolation in field-structured particle composites: Observations of giant thermoresistance, piezoresistance, and chemiresistance. Phys. Rev. B 2003, 67, 094207.
[119] Severin, E.J.; Sanner, R.D.; Doleman, B.J.; Lewis, N.S. Differential detection of enantiomeric gaseous analytes using carbon black−chiral polymer composite, chemically sensitive resistors. Anal. Chem. 1998, 70, 1440–1443.
[120] Ogura, K.; Shiigi, H. Conducting-Insulating Polymer Composites: Selectively Sensing Materials for Humidity and CO2. In Conducting Polymers and Polymer Electrolytes; American Chemical Society: City, Country, 2002; Volume 832, pp. 88–102.
[121] Ogura, K.; Fujii, A.; Shiigi, H.; Nakayama, M.; Tonosaki, T. Effect of hygroscopicity of insulating unit of polymer composites on their response to relative humidity. J. Electrochem. Soc. 2000, 147, 1105–1109.
[122] Chen, X.B.; Issi, J.P.; Cassart, M.; Devaux, J.; Billaud, D. Temperature dependence of the conductivity in conducting polymer composites. Polymer 1994, 35, 5256–5258.
[123] Wieczorek, W. Temperature dependence of conductivity of mixed-phase composite polymer solid electrolytes. Mater. Sci. Eng. B 1992, 15, 108–114.
[124] Doleman, B.J.; Severin, E.J.; Lewis, N.S. Trends in odor intensity for human and electronic noses: relative roles of odorant vapor pressure vs. molecularly specific odorant binding. Proc. Natl. Acad. Sci. USA 1998, 95, 5442–5447.
[125] Hands, P.J.W.; Laughlin, P.J.; Bloor, D. Metal–polymer composite sensors for volatile organic compounds: Part 1. Flow-through chemi-resistors. Sens. Actuators B Chem. 2012, 162, 400–408.
[126] Chen, X.; Jiang, Y.; Wu, Z.; Li, D.; Yang, J. Morphology and gas-sensitive properties of polymer based composite films. Sens. Actuators B Chem. 2000, 66, 37–39.
[127] Lee, J.; Choi, J.; Hong, J.; Jung, D.; Shim, S.E. Conductive silicone/acetylene black composite film as a chemical vapor sensor. Synth. Metals 2010, 160, 1030–1035.
[128] Luo, Y.; Li, Y.; Li, Z. Investigation into the vapor sensing behavior and mechanism of a reactive hydroxyl-terminated polybutadiene liquid rubber/carbon black conductive film. Smart Mater. Struct. 2006, 15, 1979–1985.
[129] Zhang, B.; Dong, X.; Song, W.; Wu, D.; Fu, R.; Zhao, B.; Zhang, M. Electrical response and adsorption performance of novel composites from polystyrene filled with carbon aerogel in organic vapors. Sens. Actuators B Chem. 2008, 132, 60–66.
[130] Zhang, B.; Dong, X.; Fu, R.; Zhao, B.; Zhang, M. The sensibility of the composites fabricated from polystyrene filling multi-walled carbon nanotubes for mixed vapors. Compos. Sci. Technol. 2008, 68, 1357–1362.
[131] Zhang, B.; Fu, R.; Zhang, M.; Dong, X.; Zhao, B.; Wang, L.; Pittman, C.U., Jr. Studies of the vapor-induced sensitivity of hybrid composites fabricated by filling polystyrene with carbon black and carbon nanofibers. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1884–1889.
[132] Wei, G.; Saitoh, H.; Fujiki, K.; Yamauchi, T.; Tsubokawa, N. Grafting of branched polymers onto the surface of vapor grown carbon fiber and their electric properties. Polym. Bull. 2008, 60, 219–228.
[133] Niu, L.; Luo, Y.; Li, Z. A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol). Sens. Actuators B Chem. 2007, 126, 361–367.
[134] Li, L.; Luo, Y.; Li, Z. The preparation and vapor-induced response of a conductive nanocomposite based on poly(methyl acrylic acid)/expanded graphite by in situ polymerization. Smart Mater. Struct. 2007, 16, 1570–1574.
[135] Doleman, B.J.; Sanner, R.D.; Severin, E.J.; Grubbs, R.H.; Lewis, N.S. Use of compatible polymer blends to fabricate arrays of carbon black-polymer composite vapor detectors. Anal. Chem. 1998, 70, 2560–2564.
[136] Kim, S.J. The effect on the gas selectivity of CNT-based gas sensors by binder in SWNT/Silane sol solution. IEEE Sens. J. 2010, 10, 173–177.
[137] Zee, F.; Judy, J. W. Micromachined polymer-based chemical gas sensor array. Sens. Actuators B Chem. 2001, 72, 120–128.
[138] Ha, S.-C.; Kim, Y.S.; Yang, Y.; Kim, Y.J.; Cho, S.-M.; Yang, H.; Kim, Y.T. Integrated and microheater embedded gas sensor array based on the polymer composites dispensed in micromachined wells. Sens. Actuators B Chem. 2005, 105, 549–555.
[139] Kim, Y.S. Microheater-integrated single gas sensor array chip fabricated on flexible polyimide substrate. Sens. Actuators B Chem. 2006, 114, 410–417.
[140] Wang, J.; Musameh, M. Carbon nanotube screen-printed electrochemical sensors. Analyst 2004, 129, 1–2.
[141] Schmidt, R.H.; Kinloch, I.A.; Burgess, A.N.; Windle, A.H. The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. Langmuir 2007, 23, 5707–5712.
[142] Sun, L.; Berndt, C.C.; Gross, K.A. Hydroxyapatite/polymer composite flame-sprayed coatings for orthopedic applications. J. Biomater. Sci. Polym. Ed. 2002, 13, 977–990.
[143] Boutopoulos, C.; Pandis, C.; Giannakopoulos, K.; Pissis, P.; Zergioti, I. Polymer/carbon nanotube composite patterns via laser induced forward transfer. Appl. Phys. Lett. 2010, 96, 041104.
[144] Ulbricht, M.; Belter, M.; Langenhangen, U.; Schneider, F.; Weigel, W. Novel molecularly imprinted polymer (MIP) composite membranes via controlled surface and pore functionalizations. Desalination 2002, 149, 293–295.
[145] Wang, L.C.; Tang, K.T.; Chiu, S.W.; Yang, S.R.; Kuo, C.T. A bio-inspired two-layer multiple-walled carbon nanotube–polymer composite sensor array and a bio-inspired fast-adaptive readout circuit for a portable electronic nose. Biosens. Bioelectron. 2011, 26, 4301–4307.
[146] Doleman, B.J.; Lonergan, M.C.; Severin, E.J.; Vaid, T.P.; Lewis, N.S. Quantitative study of the resolving power of arrays of carbon black-polymer composites in various vapor-sensing tasks. Anal. Chem. 1998, 70, 4177–4190.
[147] Sisk, B.C.; Lewis, N.S. Estimation of chemical and physical characteristics of analyte vapors through analysis of the response data of arrays of polymer-carbon black composite vapor detectors. Sens. Actuators B Chem. 2003, 96, 268–282.
[148] Che Harun, F.K.; Taylor, J.E.; Covington, J.A.; Gardner, J.W. An electronic nose employing dual-channel odour separation columns with large chemosensor arrays for advanced odour discrimination. Sens. Actuators B Chem. 2009, 141, 134–140.
[149] Beccherelli, R.; Zampetti, E.; Pantalei, S.; Bernabei, M.; Persaud, K.C. Design of a very large chemical sensor system for mimicking biological olfaction. Sens. Actuators B Chem. 2010, 146, 446–452.
[150] Bernabei, M.; Persaud, K.C.; Pantalei, S.; Zampetti, E.; Beccherelli, R. Large-scale chemical sensor array testing biological olfaction concepts. IEEE Sens. J. 2012, 12, 3174–3183.
[151] Falconi, C.; Martinelli, E.; di Natale, C.; D’Amico, A.; Maloberti, F.; Malcovati, P.; Baschirotto, A.; Stornelli, V.; Ferri, G. Electronic interfaces. Sens. Actuators B Chem. 2007, 121, 295–329.
[152] Gardner, J.W.; Guha, P.K.; Udrea, F.; Covington, J.A. CMOS interfacing for integrated gas sensors: A review. IEEE Sens. J. 2010, 10, 1833–1848.
[153] Corcoran, P. The effects of signal conditioning and quantization upon gas and odour sensing system performance. Sens. Actuators B Chem. 1994, 19, 649–653.
[154] Neaves, P.I.; Hatfield, J.V. A new generation of integrated electronic noses. Sens. Actuators B Chem. 1995, 27, 223–231.
[155] Dyer, D.C.; Gardner, J.W. High-precision intelligent interface for a hybrid electronic nose. Sens. Actuators A Phys. 1997, 62, 724–728.
[156] De Marcellis, A.; Ferri, G.; D’Amico, A.; di Natale, C.; Martinelli, E. A fully-analog lock-in amplifier with automatic phase alignment for accurate measurements of ppb gas concentrations. IEEE Sens. J. 2012, 12, 1377–1383.
[157] Grassi, M.; Malcovati, P.; Baschirotto, A. A 160 dB equivalent dynamic range auto-scaling interface for resistive gas sensors arrays. IEEE J. Solid-State Circuits 2007, 42, 518–528.
[158] Baschirotto, A.; Capone, S.; D’Amico, A.; di Natale, C.; Ferragina, V.; Ferri, G.; Francioso, L.; Grassi, M.; Guerrini, N.; Malcovati, P.; et al. A portable integrated wide-range gas sensing system with smart A/D front-end. Sens. Actuators B Chem. 2008, 130, 164–174.
[159] Pioggia, G.; Ferro, M.; di Francesco, F. Towards a real-time transduction and classification of chemoresistive sensor array signals. IEEE Sens. J. 2007, 7, 237–244.
[160] Rairigh, D.J.; Warnell, G.A.; Chao, X.; Zellers, E.T.; Mason, A.J. CMOS baseline tracking and cancellation instrumentation for nanoparticle-coated chemiresistors. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 267–276.
[161] Merino, J.L.; Bota, S.A.; Casanova, R.; Dieguez, A.; Cane, C.; Samitier, J. A reusable smart interface for gas sensor resistance measurement. IEEE Trans. Instrum. Measur. 2004, 53, 1173–1178.
[162] Grassi, M.; Malcovati, P.; Baschirotto, A. A 141-dB dynamic range CMOS gas-sensor interface circuit without calibration with 16-bit digital output word. IEEE J. Solid-State Circuits 2007, 42, 1543–1554.
[163] De Marcellis, A.; Depari, A.; Ferri, G.; Flammini, A.; Marioli, D.; Stornelli, V.; Taroni, A. Uncalibrated integrable wide-range single-supply portable interface for resistance and parasitic capacitance determination. Sens. Actuators B Chem. 2008, 132, 477–484.
[164] Ferri, G.; di Carlo, C.; Stornelli, V.; de Marcellis, A.; Flammini, A.; Depari, A.; Jand, N. A single-chip integrated interfacing circuit for wide-range resistive gas sensor arrays. Sens. Actuators B Chem. 2009, 143, 218–225.
[165] De Marcellis, A.; Depari, A.; Ferri, G.; Flammini, A.; Marioli, D.; Stornelli, V.; Taroni, A.A CMOS integrable oscillator-based front end for high-dynamic-range resistive sensors. IEEE Trans. Instrum. Measur. 2008, 57, 1596–1604.
[166] Ponzoni, A.; Depari, A.; Falasconi, M.; Comini, E.; Flammini, A.; Marioli, D.; Taroni, A.; Sberveglieri, G. Bread baking aromas detection by low-cost electronic nose. Sens. Actuators B Chem. 2008, 130, 100–104.
[167] Ferri, G.; de Marcellis, A.; di Carlo, C.; Stornelli, V.; Flammini, A.; Depari, A.; Marioli, D.; Sisinni, E. A CCII-based low-voltage low-power read-out circuit for DC-excited resistive gas sensors. IEEE Sens. J. 2009, 9, 2035–2041.
[168] Depari, A.; Flammini, A.; Marioli, D.; Sisinni, E.; de Marcellis, A.; Ferri, G.; Stornelli, V. A new and fast-readout interface for resistive chemical sensors. IEEE Trans. Instrum. Measur. 2010, 59, 1276–1283.
[169] De Marcellis, A.; Depari, A.; Ferri, G.; Flammini, A.; Sisinni, E. A CMOS integrated low-voltage low-power time-controlled interface for chemical resistive sensors. Sens. Actuators B Chem. 2013, 179, 313–318.
[170] Depari, A.; Flammini, A.; Marioli, D.; Sisinni, E.; Comini, E.; Ponzoni, A. An electronic system to heat mox sensors with synchronized and programmable thermal profiles. IEEE Trans. Instrum. Measur. 2012, 61, 2374–2383.
[171] Bagga, S.; Bhat, N.; Mohan, S. LPG gas-sensing system with SnO2 thin-film transducer and 0.7-μm CMOS signal conditioning ASIC. IEEE Trans. Instrum. Measur. 2009, 58, 3653–3658.
[172] Bissi, L.; Cicioni, M.; Placidi, P.; Zampolli, S.; Elmi, I.; Scorzoni, A. A programmable interface circuit for an ultralow power gas sensor. IEEE Trans. Instrum. Measur. 2011, 60, 282–289.
[173] Saxena, R.S.; Bhan, R.K.; Aggrawal, A. A new discrete circuit for readout of resistive sensor arrays. Sens. Actuators A Phys. 2009, 149, 93–99.
[174] Lee, H.; Lee, S.; Kim, D.-H.; Perello, D.; Park, Y. J.; Hong, S.-H.; Yun, M.; Kim, S. Integrating metal-oxide-decorated CNT networks with a CMOS readout in a gas sensor. Sensors 2012, 12, 2582–2597.
[175] Lemmerhirt, D.F.; Wise, K.D. Chip-scale integration of data-gathering microsystems. Proc. IEEE 2006, 94, 1138–1159.
[176] Hierlemann, A.; Brand, O.; Hagleitner, C.; Baltes, H. Microfabrication techniques for chemical/biosensors. Proc. IEEE 2003, 91, 839–863.
[177] Brand, O. Microsensor integration into systems-on-chip. Proc. IEEE 2006, 94, 1160–1176.
[178] Garcı́a-Guzmán, J.; Ulivieri, N.; Cole, M.; Gardner, J.W. Design and simulation of a smart ratiometric ASIC chip for VOC monitoring. Sens. Actuators B Chem. 2003, 95, 232–243.
[179] Perera, A.; Papamichail, N.; Barsan, N.; Weimar, U.; Marco, S. On-line novelty detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions. IEEE Sens. J. 2006, 6, 770–783.
[180] Frey, U.; Graf, M.; Taschini, S.; Kirstein, K.U.; Hierlemann, A. A digital CMOS architecture for a micro-hotplate array. IEEE J. Solid-State Circuits 2007, 42, 441–450.
[181] Guo, B.; Bermak, A.; Chan, P.C.H.; Yan, G.-Z. A monolithic integrated 4 × 4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits. Solid-State Electron. 2007, 51, 69–76.
[182] Mu, X.; Covington, E.; Rairigh, D.; Kurdak, C.; Zellers, E.; Mason, A.J. CMOS monolithic nanoparticle-coated chemiresistor array for micro-scale gas chromatography. IEEE Sens. J. 2012, 12, 2444–2452.
[183] Tang, K.-T.; Goodman, R.M. Towards a Wearable Electronic Nose Chip. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 10–13 September 2006; pp. 273–276.
[184] Haugen, J.-E.; Kvaal, K. Electronic nose and artificial neural network. Meat Sci. 1998, 49, S273–S286.
[185] Luo, D.; Hosseini, H.G.; Stewart, J.R. Application of ANN with extracted parameters from an electronic nose in cigarette brand identification. Sens. Actuators B Chem. 2004, 99, 253–257.
[186] Pan, C.-H.; Hsieh, H.-Y.; Tang, K.-T. An analog multilayer perceptron neural network for a portable electronic nose. Sensors 2012, 13, 193–207.
[187] Ng, K.T.; Boussaid, F.; Bermak, A. A CMOS single-chip gas recognition circuit for metal oxide gas sensor arrays. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 1569–1580.
[188] Koickal, T.J.; Hamilton, A.; Su Lim, T.; Covington, J.A.; Gardner, J.W.; Pearce, T.C. Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 60–73.
[189] Hong, H.-K.; Kwon, C.H.; Kim, S.-R.; Yun, D.H.; Lee, K.; Sung, Y.K. Portable Electronic Nose System with Gas Sensor Array and Artificial Neural Network. Sens. Actuat. B-Chem. 2000, 66, 49-52.
[190] Barbri, N.E.; Llobet, E.; Bari, N.E.; Correig, X.; Bouchikhi, B. Application of a Portable Electronic Nose System to Assess the Freshness of Moroccan Sardines. Mater. Sci. Eng. C 2008, 28, 666-670.
[191] Fuchs, S.; Strobel, P.; Siadat, M.; Lumbreras, M. Evaluation of Unpleasant Odor with a Portable Electronic Nose. Mater. Sci. Eng. C 2008, 28, 949-953.
[192] O’Connell, M.; Valdora, G.; Peltzer, G.; Negri, R.M. A Practical Approach for Fish Freshness Determinations Using a Portable Electronic Nose. Sens. Actuat. B-Chem. 2001, 80, 149-154.
[193] Nake, A.; Dubreuil, B.; Raynaud, C.; Talou, T. Outdoor in situ Monitoring of Volatile Emissions from Wastewater Treatment Plants with Two Portable Technologies of Electronic Noses. Sens. Actuat. B-Chem. 2005, 106, 36-39.
[194] Hao, H.C.; Tang, K.T.; Ku, P.H.; Chao, J.S.; Li, C.H.; Yang, C.M.; Yao, D.J. Development of a Portable Electronic Nose Based on Chemical Surface Acoustic Wave Array with Multiplexed Oscillator and Readout Electronics. Sens. Actuat. B-Chem. 2010, 146, 545-553.
[195] Kim, K-H. Experimental Demonstration of Masking Phenomena between Competing Odorants via an Air Dilution Sensory Test. Sensors 2010, 10, 7287-7302.
[196] Munoz-Aguirre, S.; Yoshino, A.; Nakamoto, T.; Moriizumi, T. Odor Approximation of Fruit Flavors Using a QCM Odor Sensing System. Sens. Actuat. B-Chem. 2007, 123, 1101-1106.
[197] Wyszynski, B.; Yamanaka, T.; Nakamoto, T. Recording and Reproducing Citrus Flavors Using Odor Recorder. Sens. Actuat. B-Chem. 2005, 106, 388-393.
[198] Flamini, G.; Cioni, P.L. Odour Gradients and Patterns in Volatile Emission of Different Plant Parts and Developing Fruits of Grapefruit (Citrus paradisi L.). Food Chem. 2010, 120, 984-992.
[199] Balbontin, C.; Gaete-Eastman, C.; Vergara, M.; Herrera, R.L.; Moya-Le’on, M.A. Treatment with 1-MCP and the Role of Ethylene in Aroma Development of Mountain Papaya Fruit. Postharv. Biol. Technol. 2007, 43, 67-77.
[200] Buttery, R.G.; Teranishi, R.; Ling, L.C.; Turnbaugh J.G. Quantitative and Sensory Studies on Tomato Paste Volatiles. J. Agric. Food Chem. 1990, 38, 336-340.
[201] Buttery, R.G.; Turnbaugh, J.G.; Ling, L.C. Contribution of Volatiles to Rice Aroma. J. Agric. Food Chem. 1988, 36, 1006-1009.
[202] Takeoka, G.R.; Flath, R.A.; Mon, T.R.; Teranishi, R.; Guentert, M. Volatile Constituents of Apricot (Prunus armeniaca). J. Agric. Food Chem. 1990, 38, 471-477.
[203] Natale, C.D.; Macagnano, A.; Mantini, A.; Davide, F.; D’Amico, A.; Paolesse, R.; Boschi, T.; Faccio, M.; Ferri, G. Advances in Food Analysis by Electronic Nose. IEEE Ind. Electron. 1997, 1, 122-127.
[204] Moos, R.; Sahner, K.; Fleischer, M.; Guth, U.; Barsan, N.; Weimar, U. Solid State Gas Sensor Research in Germany—A Status Report. Sensors 2009, 9, 4323-4365.
[205] Zhai, T.; Fang, X.; Liao, M.; Xu, X.; Zeng, H.; Yoshio, B.; Golberg, D. A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors. Sensors 2009, 9, 6504-6529.
[206] Batzill, M. Surface Science Studies of Gas Sensing Materials: SnO2. Sensors 2006, 6, 1345-1366.
[207] Caricato, A.P.; Luches, A.; Rella, R. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation. Sensors 2009, 9, 2682-2696.
[208] Zhang, S.; Xie, C.; Zeng, D.; Zhang, Q.; Li, H.; Bi, Z. A Feature Extraction Method and a Sampling System for Fast Recognition of Flammable Liquids with a Portable E-Nose. Sens. Actuat. B-Chem. 2007, 12, 437-443.
[209] Harun, F.K.C.; Covington, J.A.; Gardner, J.W. Portable e-Mucosa System: Mimicking the Biological Olfactory. Procedia Chem. 2009, 1, 991-994.
[210] Laconte, J; Dupont, C; Flandre, D; Raskin, JP, SOI CMOS compatible low-power microheater optimization for the fabrication of smart gas sensors. IEEE Sens. J. 2004, 4, 670-680.
[211] Grate, JW; Patrash, SJ; Abraham, MH, Method for Estimating Polymer-Coated Acoustic Wave Vapor Sensor Responses. Anal. Chem. 1995, 67, 2162-2169.
[212] Lin, Y-W; Wu, T-M, Synthesis and characterization of externally doped sulfonated polyaniline/multi-walled carbon nanotube composites. Compos Sci Technol. 2009, 69, 2559-2565.
[213] Chin, S-M; Hsieh, C-C; Chiu, C-F; Tsai, H-H, A new rail-to-rail comparator with adaptive power control for low power SARADCs in biomedical application. In: Proceedings of 2010 I.E. international symposium on circuits and systems (ISCAS), May 30–June 2 2010, pp 1575–1578.
[214] Chang, M-F; Kwai, D-M; Yang, S-M; Chou, Y-F; Chen, P-C, Experiments on reducing standby current for compatible SRAM using hidden clustered source line control. In: 7th international conference on ASIC, 2007. ASICON ’07. 22–25 Oct 2007. pp 1038–1041
[215] Liou, C-Y; Hsieh, C-C, A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).
[216] Chen, H.; Murray, A. F., A Continuous Restricted Boltzmann Machine with an Implementable Training Algorithm, IEE Proc. Of Vision, Image and Sig. Proc., 2003, 150, 153-158.
[217] Chen, H.; Fleury, P.; Murray, A. F., Continuous-valued probabilistic behaviour in a VLSI generative model, IEEE Trans. Neural Netw., 2006, 17, 755-770.
[218] Wang, J-H; Tang, K-T; Chen, H, An embedded probabilistic neural network with on-chip learning capability, 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS).
[219] Haykin, S., Communication Systems, 4th edition, Wiley, 1978.
[220] Hinton, G. E., Training products of experts by minimizing contrastive divergence, Neural Computation., 2002, 14, 1771-1800.
[221] Chang, M-F; Chen, M-P; Chen, L-F; Yang, S-M; Kuo, Y-J; Wu, J-J; Su, H-Y; Chu, Y-H; Wu, W-C; Yang, T-Y; Yamauchi, H., A Sub-0.3 V Area-Efficient L-Shaped 7T SRAM With Read Bitline Swing Expansion Schemes Based on Boosted Read-Bitline, Asymmetric-VTH Read-Port, and Offset Cell VDD Biasing Techniques, IEEE Sens. J, 2013, 48, 2558-2569.
[222] Cardillo, G.P.; Fu, K-S, On Suboptimal Sequential Pattern Recognition," IEEE Trans. Comp. 1968, C-17, 789-792.
[223] Tang, K-T; Chiu, S-W; Pan, C-H; Hsieh, H-Y; Liang, Y-S; Liu, S-C. Development of a Portable Electronic Nose System for the Detection and Classification of Fruity Odors. Sensors, 2010, 10, 9179-9193.