簡易檢索 / 詳目顯示

研究生: 黃鼎耆
Huang, Ting-Chi
論文名稱: 藉由擬合中紅外線波段的光譜能帶分佈來篩選AKARI北黃極深域內的活躍星系核
AGN selection by 18-band SED fitting in mid-infrared in the AKARI NEP deep field
指導教授: 後藤友嗣
Goto, Tomotsugu
口試委員: 大山陽一
Oyama, Youichi
賴詩萍
Lai, Shih-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 43
中文關鍵詞: 活躍星系核光譜能帶分佈恆星形成星系星爆星系
外文關鍵詞: active, spectral, star-forming, starburst
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由擬合中紅外線波段的光譜能帶分佈,我們發展出了一套有效篩選活躍星系核的方法。活躍星系核常被氣體和塵埃所遮蔽,因此不容易使用可見光、紫外線或X光的望遠鏡來觀測。但因為氣體和塵埃吸收紫外線後會產生熱輻射並以紅外線傳遞,所以我們可以使用紅外線望遠鏡。而另一方面,恆星形成星系(星爆星系)也在中紅外線波段有高強度的多環芳香烴發射譜線,所以建立一個準確的方法來篩選活躍星系核是必須且重要的。然而,在過去的中紅外線研究中,望遠鏡可用的濾鏡只有三、四個,也因此受到了限制。我們使用AKARI太空望遠鏡,其擁有連續分布在近、中紅外波段的九個濾鏡,並結合WISE和Spitzer的觀測資料,總共使用了十八個能帶來篩選活躍星系核。在AKARI北黃極深域裡,我們從4682個星系中篩選出了1388個活躍星系核。同時也表示了活躍星系核比率為29.6$
    m$0.8$\%$(其中有47$\%$為西弗1.8和西弗2型)。跟過去WISE和Spitzer雙色圖的篩選做比較,顯示出過去的方法會遺漏西弗類型的活躍星系核。我們透過疊加輻射通量並擬合中位數測試出結果是可信的。以Chandra望遠鏡的觀測結果作為標準和過去的篩選方法做比較,在X光活躍星系核的樣本裡面,我們找回的活躍星系核數量比過去方法多了20$\%$。


    We have developed an efficient Active Galactic Nucleus (AGN) selection method using 18-band Spectral Energy Distribution (SED) fitting in mid-infrared (mid-IR). AGNs are often obscured by gas and dust, and those obscured AGNs tend to be missed in optical, UV and soft X-ray observations. Mid-IR light can help us to recover them in an obscuration free way using their thermal emission. On the other hand, Star-Forming Galaxies (SFG) also have strong PAH emission features in mid-IR. Hence, establishing an accurate method to separate populations of AGN and SFG is important. However, in previous mid-IR surveys, only 3 or 4 filters were available, and thus the selection was limited. We combined AKARI's continuous 9 mid-IR bands with WISE and Spitzer data to create 18 mid-IR bands for AGN selection. Among 4682 galaxies in the AKARI NEP deep field, 1388 are selected to be AGN hosts, which implies an AGN fraction of 29.6$
    m$0.8$\%$ (among them 47$\%$ are Seyfert 1.8 and 2). Comparing the result from SED fitting into WISE and Spitzer colour-colour diagram reveals that Seyferts are often missed by previous studies. Our result has been tested by stacking median magnitude for each sample. Using X-ray data from Chandra, we compared the result of our SED fitting with WISE's colour box selection. We recovered more X-ray detected AGN than previous methods by 20$\%$.

    1 Introduction 1 2 Data and Analysis 2 2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 SED fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Results 6 3.1 AGN Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.1 SED AGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Colour AGN . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Examination by X-ray AGN . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Examination by stacked median magnitude . . . . . . . . . . . . . . 15 4 Discussion 17 4.1 SED AGN missed in colour method . . . . . . . . . . . . . . . . . . 24 4.2 Colour AGN missed in SED fitting . . . . . . . . . . . . . . . . . . 24 4.3 Implication for Luminosity Function of AGN . . . . . . . . . . . . . 27 4.4 Relaxed selection and AGN fraction . . . . . . . . . . . . . . . . . . 27 4.5 Comparision with another template . . . . . . . . . . . . . . . . . . 29 4.6 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Summary 32 A SWIRE template 35 B CFHT u ∗ -band data reduction in the AKARI NEP field 36 B.1 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 B.2 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 C Comments from the oral defense 38 C.1 What are the stars in the AGN colour box? . . . . . . . . . . . . . 38 C.2 Reduced χ 2 distribution . . . . . . . . . . . . . . . . . . . . . . . . 38 C.3 Why is the recovering rate of X-ray AGN not 100%? . . . . . . . . 41

    Alexander D.M., et al. 2001, AJ, 122, 2156
    Arnouts S. et al. 1999, MNRAS, 310, 540
    Assef R.J., et al. 2013, ApJ, 772, 26
    Brown M., et al. 2014, ApJS, 212, 18
    Buat V., et al. 2015, A&A, 577, A141
    Calzetti D., et al. 2000, ApJ, 533, 695
    Caitlin M. Casey, 2012, MNRAS, 425, 3094
    Chary R. & Elbaz D., 2001, ApJ, 556, 562
    Chung S.M., et al. 2014, ApJ, 790, 54
    Coleman, G. D.; Wu, C.-C.; Weedman, D. W. 1980, ApJS, 43, 393
    Feltre A., et al. 2013, MNRAS, 434, 2426
    Glikman, et al. 2010, ApJ, 710, 1498
    Goto T., et al. 2010, A&A, 514, A6
    Goto T., et al. 2011, MNRAS, 414, 1903
    Goto T., et al. 2015, MNRAS, 452, 1684
    Goto T., et al. 2017, PKAS, 32, 225
    Gruppioni C., et al. 2013, MNRAS, 432, 23
    Ilbert O. et al., 2006, A&A, 457, 841
    Jarrett T.H., et al. 2011, ApJ, 735, 112
    Kinney A., et al. 1996, ApJ, 467, 38
    Kirkpatrick A., et al. 2015, ApJ, 814, 9
    Krumpe M., et al. 2015, MNRAS, 446, 911
    Lacy M., et al. 2004, ApJS, 154, 166
    Lacy M., et al. 2007, AJ, 133, 186
    Lagache G., et al. 1999, A&A, 344, 322
    Lutz D., et al. 1998, ApJ, 505, L103
    Madau P. & Haardt F. 2015, ApJL, 813, L8
    Magorrian J., et al. 1998, AJ, 115, 2285
    Matsuhara H., et al. 2006, PASJ, 58, 673
    Murakami H., et al. 2006, PASJ, 59, 369
    Murata K., et al. 2013, A&A, 559, A132
    Murata K., et al. 2014, A&A, 566, A136
    Oi N., et al. 2014, A&A, 566, A60
    Polletta M. et al. 2006, ApJ, 642, 673
    Polletta M. et al. 2007, ApJ, 663, 81
    Richards G.T. et al. 2003, AJ, 126, 1131
    Richards G.T. et al. 2006, ApJS, 166, 470
    Roebuck E. et al. 2016, ApJ, 833, 60
    Stern D. et al. 2005, ApJ, 631, 163
    Stern D. et al. 2012, ApJ, 753, 30
    Takagi T., et al. 2012, A&A, 537, A24
    Webster R.L. et al. 1995, Nature, 375, 469
    Weedman D. et al. 2006, ApJ, 653, 101
    Wright et al. 2010, ApJ, 140, 1868

    QR CODE