簡易檢索 / 詳目顯示

研究生: 李佳徽
Lee Chia-Hui
論文名稱: Synthesis of Pt/Ni Bimetallic Nanoparticles and Its Application in Dye-Sensitized Solar Cells
指導教授: 萬其超
Chi-Chao Wan
王詠雲
Yung-Yun Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 76
中文關鍵詞: 染料敏化太陽能電池太陽能電池陰極合金奈米粒子白金/鎳
外文關鍵詞: Dye-Sensitized Solar Cells, DSSC, Pt/Ni, Bimetallic Nanoparticles, Counter Electrodes
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract

    The prototype of photoelectrochemical cell, Dye-Sensitized Solar Cell (DSSC), is one of leading technology to the next generation of solar cell. It accomplishes the dual functions of optical absorption and charge separation by combining a sensitizer as a light-absorbing material with a wide-bandgap semiconductor of mesoporous or nanocrystalline morphology, which achieves the both goals of low-cost and easy-making. However, it appears that the cost increases a lot when using platinum (Pt) as a catalyst counter electrode since it is a noble metal and the intensive amount on earth is decreasing. The new preparing method developed in our lab provides an economic way preparing counter electrode by adsorbing a thin layer of Pt and successfully control the cost for DSSC.
    Bimetallic nanoparticles, which has been a technique developed for a long time, is often used as an activator in printed circuit boards (PCB) industry. In this study, our major goal is to prepare a new type counter electrode combining the technique of preparing bimetallic nanoparticles with the skill of preparing counter electrodes by a simply dipping method.
    Synthesis of various ratios (precursors Pt:Ni = (10:0), (9:1), (7:3), (5:5), (3:7):, (1:9)) of Pt/Ni alloy nanoparticles are prepared in protection of poly(vinylpyrrolidone) (PVP). Synthesis could only be practicable when Ni ≦50%. XRD, FE-TEM, and ICP-MS were applied to confirm the atomic ratio in bulk Pt/Ni colloids and on electrodes. The results suggesting that Pt:Ni = (10:0), (9:1), (7:3) are consistent with the precursor ratio we designed, whereas Pt:Ni = (5:5) is different because of Ni ions could form various nickel oxides in the solution. In addition, we proposed a 3-Stage process in total Pt/Ni reduction, that Pt:Ni = (5:5) could lead to different structure from (7:3) although they have similar atomic ratios.
    Characterization of Pt/Ni bimetallic counter electrodes were done by EIS and ICP-MS, and then checked the DSSC performances. From EIS results, simulated RCTs was obtained and does not increase along with the increase of Ni content in alloy system. Pt:Ni = (9:1) is larger than (7:3) and (5:5), which could attribute to the formation of Ni surface-rich alloy nanoparticles when Pt ions are more than Ni ions in the solution. Further information of catalytic surface area should be done by XPS. DSSC performances were tested with various ratios of Pt/Ni counter electrodes, which consistent with the EIS result we obtained before.
    Modified synthesis of Pt/Ni alloy colloids were studied by adding complex agents. Tartrate, being the preliminary complex agent, could lead to better alloy nanoparticles in XRD patterns. However, DSSC performance of Pt/Ni ally colloids with tartrate as complex agent is observed lower than the original ones. More materials should be tried to reach our goal of making Ni core Pt shell as successful bimetallic nanoparticles.


    摘 要
    本論文主要針對光電化學之太陽能電池,即染料敏化太陽能電池
    (Dye-Sensitized Solar Cells, DSSCs)之陰極材料進行研究開發。染料敏化太陽能電池之陰極主要利用佈於導電基板上白金材料進行催化反應,藉以加速太陽能電池之光電化學反應,增加其轉化效率。本實驗室發展利用高分子型保護劑(PVP)所製備出之金屬奈米溶膠,利用濕製程之浸鍍法(Dip-Coating Method),製備出奈米材料之陰極,即可有效降低製備成本。
    本論文試以直接還原法製備不同比例奈米白金/鎳合金溶膠,藉以取代純白金奈米粒子,利用紫外光光譜(UV-Visible Spectrum)及X光粉末繞射儀(X-Ray Diffraction, XRD),確認製備出白金/鎳合金奈米粒子。根據X 光粉末繞射儀、場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscopy, FE-TEM)以及感應耦合電漿質譜分析儀(Inductively Coupled Plasma Mass Spectroscopy, ICP-MS)分析可以發現,此合成方式所製備出之合金奈米粒子的金屬比例與實驗所設計之合金比例不盡相同,在白金/鎳比例為7/3 與5/5 之間有其合金比例限制存在,致使白金/鎳設計為5/5 之合金粒子的鎳材□混比例無法提高,形成與接近白金/鎳比例為7/3 之合金粒子。除了奈米溶膠之鑑定以外,本論文亦利用感應耦合電漿質譜分析儀、太陽能電池組裝測試以及電化學阻抗譜儀(Electrochemical Impedance Spectroscopy,EIS),分析利用奈米粒子溶膠及浸鍍法製備出之陰極試片,並與原溶膠中之白金/鎳合金比例比較,提出一三階段反應程序,即可推論白金/鎳比例設計為7/3 與5/5 之奈米粒子結構上的不同,且合理解釋其陰極阻抗大小及太陽能電池效率表現。
    本論文並進一步利用添加不同錯合劑的方式改質原製備方法,利
    用感應耦合電漿質譜分析儀分析發現藉由酒石酸根離子作為錯合劑,即可改善白金/鎳之合金比例。但其製備為陰極時的太陽能電池效率並不如預期,即表示酒石酸根離子之存在可能影響了白金/鎳之奈米結構,亦或是其存在於陰極上影響了陰極催化效果。此結果有待更進一步之探討以協助未來之研究開發。

    Contents Abstract...………………………………………………………I 中文摘要……………………………………………………III Contents...……………………………………………………IV List of Figures……………………………………………..…VII List of Tables…………………………………………………...X Chapter 1 Introduction of Solar energy……….……………1 1.1 Introduction…………………………………………….…….1 1.3 Classification of Solar Cells…………………………………3 1.2.1 Solid-State Junction Devices …………………………3 1.2.2 Interpenetrating Network Junctions……………………5 Chapter 2 Literature Review…………………………………3 2.1 Review on Synthesis of Pt/Ni Nanoparticles…………............7 2.1.1 Review on Synthesis of Metal Nanoparticles………7 2.1.2 Review on Pt/Ni Nanoparticles………………………9 2.1.3 Protecting Mechanism of PVP……………………….11 2.2 Structural Analysis of DSSC…………..……………………12 2.3 Operational Principles of Dye-Sensitized Solar Cells..……14 2.4 Components of DSSC…………………………………..……16 2.4.1 Substrate………………………………………..….…16 2.4.2 Nanocrystalline Photo-anode…………………………16 2.4.3 The Sensitizer: Organic dye…………………………19 2.4.4 Electrolyte……………………………………………23 2.4.5 Counter electrode……………………………………..27 2.4.6 Sealant and Spacer……………………………………28 2.4.7 Pretreatments/Underlayer…………………….………29 2.5 “Dip Coating Method” for Counter Electrode………………30 Chapter 3 Experimental Section……….…………………32 3.1 Preparation of PVP-stabilized Pt/Ni colloid…………………32 3.1.1 Materials……………………………………………...32 3.1.2 Preparing Method…………………………………….32 3.2 Preparing Counter Electrodes by Dip-Coating Method.…34 3.3 Sample Characterizations…………….……………………35 3.4 Dye-sensitized Solar Cells Preparation…………………….37 3.4.1 Materials……………………………………………37 3.4.2 Preparing Methods……………………………………38 Experiment Flow Chart……………………………………40 Chapter 4 Results and Discussion………………………….36 4.1 Characterization of Pt/Ni Nanoparticles Colloids.………41 4.1.1 Synthesis of Pt/Ni nanoparticles…………….......41 4.1.2 Qualitative Properties of Pt/Ni Bimetallic Nanoparticles …………………………………………..………….43 4.2 Charaterization of Pt/Ni Electrodes..……………………...…49 4.2.1 FE-TEM and ICP-MS Analysis ..…………………49 4.2.2 Electrochemical Impedance Spectroscopy (EIS)..……52 4.3 DSSC Performance………………………….………………56 4.3.1 Cell efficiency…………………....…………………56 4.3.2 Dark Current Analysis…………......…………………59 4.4 Modified Synthesis of Pt/Ni Nanoparticles…….……………61 Chapter 5 Conclusions…………………………...…………66 Chapter 6 Future Works……………………………………69 Refernces…………………………………………..…………70 Appendix. Exploratory Study of TiO2/SnO2 Pretreatments on TCO A.1 Improvements on Surface Uniformity by TiO2/SnO2 Pretreatments………………………………………………….i A.2 Experimental of TiO2/SnO2 Pretreatments……………………ii A.2.1 Materials………………………………………………ii A.2.2 Experimental Setup…………………………………..ii A.2.3 Measurements………………………………………iii A.3 Results and Discussion………………………...………………iv A.4 TiO2 Photoanode Paste on ATO After TiO2/SnO2 Solution Pretreatments……………………………………..…………..xv

    References

    1. M. Gratzel, Nature, 2001, 414, 338-344.
    2. http://www.dur.ac.uk/~dph0/www5/am1_5.html
    3. M. Gratzel, Inorganic Chemistry, 2005, 44, 6841-6851.
    4. 蔡宗憲, 國立成功大學化工所碩士論文, 2004.
    5. M. Gratzel, Mrs Bulletin, 2005, 30, 23-27.
    6. D. L. Feldheim, C. A. Foss and I. Marcel Dekker, 2002, New York.
    7. J. Turkevich and G. Kim, Science, 1970, 873.
    8. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein and M. A. ElSayed, Science, 1996, 272, 1924-1926.
    9. K. Esumi, A. Suzuki, A. Yamahira and K. Torigoe, Langmuir, 2000, 16, 2604-2608.
    10. W. P. Huang, X. H. Tang, Y. Q. Wang, Y. Koltypin and A. Gedanken, Chemical Communications, 2000, 1415-1416.
    11. J. C. Yu, J. G. Yu, W. K. Ho and L. Z. Zhang, Chemical Communications, 2001, 1942-1943.
    12. K. Mallik, M. Mandal, N. Pradhan and T. Pal, Nano Letters, 2001, 1, 319-322.
    13. Y. Zhou, C. Y. Wang, Y. R. Zhu and Z. Y. Chen, Chemistry of Materials, 1999, 11, 2310-2312.
    14. K. Soulantica, A. Maisonnat, M. C. Fromen, M. J. Casanove, P. Lecante and B. Chaudret, Angewandte Chemie-International Edition, 2001, 40, 448-451.
    15. K. Esumi, Tano T and M. K, Langmuir, 1989, 5, 268-270.
    16. K. J. Klabunde, Y. X. Li and B. J. Tan, Chemistry of Materials, 1991, 3, 30-39.
    17. W. X. Tu and H. F. Lin, Chemistry of Materials, 2000, 12, 564-567.
    18. W. Y. Yu, W. X. Tu and H. F. Liu, Langmuir, 1999, 15, 6-9.
    19. S. Komarneni, D. S. Li, B. Newalkar, H. Katsuki and A. S. Bhalla, Langmuir, 2002, 18, 5959-5962.
    20. H. Bonnemann and R. M. Richards, Eur. J. Inorg. Chem. , 2001, 10, 2455.
    21. N. Toshima and T. Yonezawab, New J. Chem., 1998, 1998, 1179-1201.
    22. T. Naoki and Y. Wang, Chemistry Letters, 1996, 729.
    23. T. Naoki and Y. Wang, Langmuir, 1994, 10, 4574-4580.
    24. S. R. Brankovic, J. McBreen and R. R. Adzic, Surface Science, 2001, 479, L363.
    25. T. Nakashima, S. Nohara, H. Inoue and C. Iwakura, Research on Chemical Intermediates, 2006, 32, 561-573.
    26. S. R. Brankovic, J. X. Wang, Y. Shu, R. Sabatini, J. McBreen and R. R. Adzic, J. Electroanal. Chem., 2002, 231, 524-525.
    27. T. C. Deivaraj, W. Chena and J. Y. Lee, J. Mater. Chem., 2003, 13, 2555-2560.
    28. H. A. Gasteiger, N. M. Markovic and P. N. Ross, Journal of Physical Chemistry, 1995, 99, 8290-8301.
    29. P. K. Babu, H. S. Kim, E. Oldfield and A. Wieckowski, Journal of Physical Chemistry B, 2003, 107, 7595-7600.
    30. R. X. Liu, H. Iddir, Q. B. Fan, G. Y. Hou, A. L. Bo, K. L. Ley, E. S. Smotkin, Y. E. Sung, H. Kim, S. Thomas and A. Wieckowski, Journal of Physical Chemistry B, 2000, 104, 3518-3531.
    31. J. H. Choi, K. W. Park, B. K. Kwon and Y. E. Sung, Journal of the Electrochemical Society, 2003, 150, A973-A978.
    32. T. Page, R. Johnson, J. Hormes, S. Noding and B. Rambabu, Journal of Electroanalytical Chemistry, 2000, 485, 34-41.
    33. K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim and A. Wieckowski, Journal of Physical Chemistry B, 2002, 106, 1869-1877.
    34. J. Mathiyarasu, A. M. Remona, A. Mani, K. L. N. Phani and V. Yegnaraman, Journal of Solid State Electrochemistry, 2004, 8, 968-975.
    35. J. F. Drillet, A. Ee, J. Friedemann, R. Kotz, B. Schnyder and V. M. Schmidt, Electrochimica Acta, 2002, 47, 1983-1988.
    36. M. S. H. N. P. Lalla*, L. Dupont§,, J.-M. T. a. K. Tekaia-Elhsissen§ and O. N. S. |, CURRENT SCIENCE, 2000, 78, 73-83.
    37. M. M. Sujit Kumar Ghosh, Subrata Kundu, Sudip Nath, Tarasankar Pal, Applied Catalysis A: General, 2004, 268, 61-66.
    38. Hui Yang a, Christophe Coutanceau b, Jean-Michel Le´ger b, Nicolas Alonso-Vante b, and C. Lamy, Journal of Electroanalytical Chemistry, 2005, 576, 305-313.
    39. J. C. Myoung-ki Min, Kyuwoong Cho, Hasuck Kim, Electrochimica Acta, 2000, 45, 4211-4217.
    40. W. V. Hui Yang, † Claude Lamy, and Nicola´s Alonso-Vante, Journal of Physical Chemistry B, 2004, 108, 11024-11034.
    41. J. R. C. S. E. Antolini, E.R. Gonzalez, Journal of Electroanalytical Chemistry, 2005, 580, 145-154.
    42. L. Xiong, A. M. Kannan and A. Manthiram, Electrochemistry Communications, 2002, 4, 898-903.
    43. L. Xiong and A. Manthiram, Electrochimica Acta, 2005, 50, 2323-2329.
    44. Zongtao Zhang, Bin Zhao and L. Hu, JOURNAL OF SOLID STATE CHEMISTRY, 1996, 121, 105-110.
    45. M. Gratzel, Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164, 3-14.
    46. M. Gr□tzel, Prog. Photovolt. Res. Appl., 2000, 8, 171-185.
    47. T. Miyasaka and Y. Kijitori, Journal of The Electrochemical Society, 2004, 151, A1767-A1773.
    48. M. Gr□tzel, MRS BULLETIN, 2005, 30, 23-27.
    49. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Gratzel, Journal of the American Ceramic Society, 1997, 80, 3157-3171.
    50. K. Kalyanasundaram and M. Gr□tzel, Coord. Chem. rev., 1998, 77.
    51. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, Journal of the American Chemical Society, 1993, 115, 6382-6390.
    52. G. P. Smestad and M. Gratzel, Journal of Chemical Education, 1998, 75, 752-756.
    53. D. S. Tsoukleris, I. M. Arabatzis, E. Chatzivasiloglou, A. I. Kontos, V. Belessi, M. C. Bernard and P. Falaras, Solar Energy 2005, 79, 422-430.
    54. S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura and H. Minoura, Solid State Ionics, 2002, 151, 19-27.
    55. S. Karuppuchamy, D. P. Amalnerkar, K. Yamaguchi, T. Yoshida, T. Sugiura and H. Minoura, Chemistry Letters, 2001, 78-79.
    56. J. Halme, J. Saarinen and P. Lund, Solar Energy Materials and Solar Cells, 2006, 90, 887-899.
    57. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor and C. A. Grimes, J. Phys. D: Appl. Phys., 2006, 39, 2498-2503.
    58. B. Tan and Y. Y. Wu, Journal of Physical Chemistry B, 2006, 110, 15932-15938.
    59. B. O'Regan and M. Gr□tzel, NATURE, 1991, 353, 737-740.
    60. M. Gratzel, Progress in Photovoltaics, 2000, 8, 171-185.
    61. http://kuroppe.tagen.tohoku.ac.jp/~dscdyecollection.htm
    62. A. Kay and M. Gratzel, Solar Energy Materials and Solar Cells, 1996, 44, 99-117.
    63. S. Cherian and C. C. Wamser, Journal of Physical Chemistry B, 2000, 104, 3624-3629.
    64. J. Hagen, W. Schaffrath, P. Otschik, R. Fink, A. Bacher, H. W. Schmidt and D. Haarer, Synthetic Metals, 1997, 89, 215-220.
    65. Y. X. Li, J. Hagen, W. Schaffrath, P. Otschik and D. Haarer, Solar Energy Materials and Solar Cells, 1999, 56, 167-174.
    66. M. Okuya, K. Nakade and S. Kaneko, Solar Energy Materials and Solar Cells, 2002, 70, 425-435.
    67. T. L. Ma, K. Inoue, H. Noma, K. Yao and E. Abe, Journal of Photochemistry and Photobiology a-Chemistry, 2002, 152, 207-212.
    68. G. Namutdinova, S. Sensfuss, M. Schrodner, A. Hinsch, R. Sastrawan, D. Gerhard, S. Himmler and P. Wasserscheid, Solid State Ionics, 2006, 177, 3141-3146.
    69. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Gratzel, Nature Materials, 2003, 2, 498-498.
    70. W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, Journal of Physical Chemistry B, 2003, 107, 4374-4381.
    71. H. Usui, H. Matsui, N. Tanabe and S. Yanagida, Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164, 97-101.
    72. S. Yanagida, M. Watanabe, H. Matsui, K. Okada, H. Usui, T. Ezure and N. Tanabe, Fujikura Techn. Rev., 2005, 59.
    73. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, Journal of Physical Chemistry B, 2001, 105, 12809-12815.
    74. R. Kawano, H. Matsui, C. Matsuyama, A. Sato, M. Susan, N. Tanabe and M. Watanabe, Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164, 87-92.
    75. S. S. Kim, K. W. Park, J. H. Yum and Y. E. Sung, Journal of Photochemistry and Photobiology a-Chemistry, 2007, 189, 301-306.
    76. S. S. Kim, K. W. Park, J. H. Yum and Y. E. Sung, Solar Energy Materials and Solar Cells, 2006, 90, 283-290.
    77. X. M. Fang, T. L. Ma, G. Q. Guan, M. Akiyama and E. Abe, Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164, 179-182.
    78. N. Papageorgiou, Coordination Chemistry Reviews, 2004, 248, 1421-1446.
    79. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Y. Han, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2006, 45, L638-L640.
    80. T. C. Wei, C. C. Wan and Y. Y. Wang, J. Phys. Chem. C, 2007, 111, 4847-4853.
    81. T. C. Wei, C. C. Wan and Y. Y. Wang, APPLIED PHYSICS LETTERS, 2006, 88, 103122.
    82. Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164, 153-157.
    83. Y. Saito, T. Kitamura, Y. Wada and S. Yanagida, Chemistry Letters, 2002, 1060-1061.
    84. E. Ramasamy, W. J. Lee, D. Y. Lee and J. S. Song, Applied Physics Letters, 2007, 90.
    85. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura and K. Murata, Solar Energy Materials and Solar Cells, 2003, 79, 459-469.
    86. R. K. Toyohisa Hoshikawa, Koichi Eguchi, Journal of Electroanalytical Chemistry, 2006, 588, 59-67.
    87. K. Suzuki, M. Yamaguchi, M. Kumagai and S. Yanagida, Chemistry Letters, 2003, 32, 28-29.
    88. T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S. Yanagida, Chemistry Letters, 2001, 1054-1055.
    89. N. Ikeda, K. Teshima and T. Miyasaka, Chemical Communications, 2006, 1733-1735.
    90. S. Ito, N. L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin and M. Gratzel, Chemical Communications, 2006, 4004-4006.
    91. P. M. Sommeling, B. C. O'Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon and J. A. M. van Roosmalen, Journal of Physical Chemistry B, 2006, 110, 19191-19197.
    92. N. G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas and A. J. Frank, Journal of Physical Chemistry B, 1999, 103, 3308-3314.
    93. L. Y. Zeng, S. Y. Dai, K. J. Wang, X. Pan, C. W. Shi and L. Guo, Chinese Physics Letters, 2004, 21, 1835-1837.
    94. S. Ito, P. Liska, P. Comte, R. L. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin and M. Gratzel, Chemical Communications, 2005, 4351-4353.
    95. S. Hore and R. Kern, Applied Physics Letters, 2005, 87.
    96. L. Han, N. Koide, Y. Chiba and T. Mitate, APPLIED PHYSICS LETTERS, 2004, 84, 2433-2435.
    97. A. Hauch and A. Georg, Electrochimica Acta, 2001, 46, 3457-3466.
    98. D. Li and S. Komarneni, J. Am. Ceram. Soc., 2006, 89, 1510-1517.
    99. Q. Kong, X. Chen, J. Yao and D. Xue, NANOTECHNOLOGY, 2004, 16, 164-168.
    100. R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, Electrochimica Acta, 2002, 47, 4213-4225.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE