簡易檢索 / 詳目顯示

研究生: 劉家豪
Liu, Chia-Hao
論文名稱: 脂肪間葉幹細胞培養液減緩香菸萃取物造成之肺上皮細胞死亡與上皮-間質轉化
Suppression of cigarette smoke extract induced cell death and epithelial-mesenchymal transition in lung epithelial cells by adipose-derived stromal cell condition medium
指導教授: 林名釗
Lin, Ming-Chao
許靖涵
Hsu, Ching-Han
口試委員: 陳仁焜
Chen, Jen-Kun
董國忠
Dong, Guo-Chung
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 146
中文關鍵詞: 脂肪間葉幹細胞香菸萃取物上皮-間質轉化
外文關鍵詞: Adipose-derived stromal cells, Cigarette smoke extract, Epithelial-mesenchymal transition, Lung
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 慢性阻塞性肺病、特發性肺纖維化、肺癌發生皆與吸菸行為高度相關。其中慢性阻塞性肺病與肺癌更是高居2012年世界十大死因之一。先前研究指出上皮-間質轉化 (EMT) 可能涉及這些肺部疾病,但相關機制目前尚未完全了解。EMT 是指上皮細胞失去其原有特徵,逐漸獲得間質細胞特徵之生物過程,主要發生在胚胎形成、組織修復、器官纖維化、腫瘤進展與轉移之過程中,與上述肺部疾病發生有重要關係。因此,研究香菸煙造成之肺細胞上皮-間質轉化現象有助於進一步了解這些肺部疾病以及治療方法。
    我們測試香菸萃取物 (CSE) 對人類肺上皮A549細胞株之影響,發現CSE會造成A549細胞死亡,而且會隨著CSE暴露時間與濃度增加而變嚴重。另一方面,沒有被CSE殺死之細胞會呈現一些EMT特徵。這些特徵包括型態延長、表面失去頂纖毛、移動力增加、E-cadherin表達減少、Vimentin和α-smooth muscle actin表達增加。最近研究指出間葉幹細胞有治療肺部疾病之潛力,而且可能是藉由旁分泌(Paracrine) 之作用產生療效。因此,我們將A549細胞培養於脂肪間葉幹細胞培養液 (ADSC-CM) ,發現ADSC-CM對CSE造成之細胞死亡有保護作用。此外,我們發現ADSC-CM能減緩CSE誘導細胞EMT特徵之效果。這些結果說明細胞EMT會受生存環境影響,在有害生存之環境中細胞EMT特徵比較明顯;在受保護之環境,例如含有ADSC-CM之環境中,EMT特徵就不明顯。最後,我們利用基因微陣列分析EMT相關基因表現,經CSE暴露後,發現A549細胞的上皮細胞特徵基因表達減少,少數間質細胞特徵基因表達增加。因此在本研究中,A549細胞只進行「部分EMT」。我們的研究結果也證明未來可以利用基因微陣列分析進一步確認類似EMT之細胞現象。
    整體而言,我們呈現CSE對A549細胞之影響,包括細胞死亡和EMT。此外,我們藉由不同的影像分析方法詳細討論A549細胞類似EMT之特徵。最後,我們利用ADSC-CM減緩CSE造成之A549細胞死亡與EMT,表示在這些吸菸行為相關之肺部疾病中,脂肪間葉幹細胞提供了旁分泌治療之可能性。


    Chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer are deadly disease related to smoking. COPD and lung cancer were among the 10 leading causes of death in the world in 2012. Previous studies suggest that epithelial-mesenchymal transition (EMT) may play a role in COPD, IPF and lung cancer; however, the mechanism linking EMT to these dieases remains incompletely understood. EMT describes a biological process by which epithelial cells lose their epithelial characteristics and gradually acquire mesenchymal traits, and this process mainly occurs in embryogenesis, tissue regeneration, organ fibrosis, cancer progression and metastasis. The causes of lung diseases mentioned above are highly associated with fibrosis, cancer progression and metastasis. Therefore, study on cigarette smoke-induced EMT in lung epithelial cells contributes to understanding and better treatment for these diseases.
    We investigated the effect of cigarette smoke extract (CSE) on human lung epithelial A549 cell line in vitro. Our results demonstrated that CSE induced A549 cell death in a concentration- and time-dependent manner. In addition, the cells escaped from CSE-induced cell death exhibited some EMT properties: elongated shape, lack of apical microvilli, increased motility, decreased E-cadherin expression, and increased Vimentin and -smooth muscle actin expression. Recent studies suggest the therapeutic potential of mesenchymal stem cells for lung diseases, which is probably mediated by paracrine actions of mesenchymal stem cells. Accordingly, A549 cells were cultured with adipose-derived stem cell condition medium (ADSC-CM), and we found that ADSC-CM had a protective effect on CSE-induced cell death; moreover, ADSC-CM repressed CSE-indued EMT properties in A549 cells. These results imply that microenvironment plays an important role in EMT induction. A549 cells tended to undergo EMT in adverse condition, but CSE induced EMT properties in A549 cells became less evident in a less adverse condition such as with the inclusion of ADSC-CM. Finally, we investigated EMT related genes by microarray analysis. After CSE exposure, we found that genes as epithelial markers were downregulated in A549 cells, but only few genes as mesenchymal markers were upregualted. As a result, A549 cells underwent “partial EMT” by CSE induction, and we show that such EMT-like phenomena can be further confirmed by microarray analysis.
    In summary, we demonstrated the effect of CSE on A549 cells, including cell death and EMT. Furthermore, we discussed EMT-like features in A549 cells via different methods for image analysis. Finally, we used ADSC-CM to repress CSE-indued cell death and EMT in A549 cells, which suggest that ADSCs have therapeutic potential for smoking related lung diseases by paracrine actions.

    摘要 i Abstract ii 誌謝 iii 目次 iv 圖目次 vii 表目次 ix 第1章 緒論 1 1.1 文獻回顧 1 1.1.1 吸菸引起肺部疾病 1 1.1.2 上皮-間質轉化 4 1.1.3 間葉幹細胞治療肺部疾病 10 1.2 研究動機與目的 12 第2章 材料與方法 14 2.1 抗體 (Antibodies) 14 2.2 藥品與溶液 (Chemicals and Solutions) 14 2.3 細胞培養 (Cell culture) 17 2.4 製備細胞培養液 (Preparation of condition medium) 17 2.5 細胞增生分析 (Cell proliferation assay) 18 2.6 細胞毒性分析 (Cytotoxicity assay) 19 2.7 上皮-間質轉化之誘導 (Induction of EMT) 21 2.8 光學顯微鏡觀察 (Light microscopy) 21 2.9 掃描式電子顯微鏡觀察 (Scanning electron microscopy) 22 2.9.1 細胞培養與固定 (Cell culture and Fixation) 22 2.9.2 脫水與臨界點乾燥 (Dehydration and Critical point drying) 23 2.9.3 離子覆膜 (Ion sputter coating) 24 2.9.4 掃描式電子顯微鏡觀察 (Scanning electron microscopy) 25 2.10 傷口癒合分析 (Wound healing assay) 26 2.11 免疫螢光染色 (Immunofluorescence staining) 27 2.12 西方墨點法 (Western Blot) 31 2.12.1 細胞培養與萃取 (Cell culture and extraction) 31 2.12.2 蛋白質定量 (Quantitation of protein) 31 2.12.3 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis,SDS-PAGE) 32 2.12.4 西方墨點法 (Western blot) 33 2.12.5 條帶密度分析 (Densitometric analysis of bands) 35 2.13 基因微陣列分析 (Microarray analysis) 35 第3章 實驗結果 38 3.1 香菸萃取物影響A549細胞之生長 38 3.1.1 香菸萃取物抑制細胞增生及降低細胞存活率 38 3.1.2 香菸萃取物造成之細胞毒性 45 3.2 香菸萃取物誘導A549細胞發生上皮-間質轉化 50 3.2.1 細胞型態與表面結構改變 50 3.2.2 細胞移動力增加 55 3.2.3 上皮-間質轉化相關標記蛋白改變 59 3.3 脂肪間葉幹細胞培養液減緩香菸萃取物對A549細胞之影響 66 3.3.1 脂肪間葉幹細胞培養液對香菸萃取物造成之細胞死亡有保護作用 66 3.3.2 脂肪間葉幹細胞培養液減緩香菸萃取物誘導之A549細胞上皮-間質轉化 75 3.4 基因微陣列分析 91 第4章 討論與結論 99 4.1 細胞死亡 99 4.2 上皮-間質轉化 102 4.3 基因表現 107 4.4 結論 117 參考文獻 119 附錄一 139 附錄二 143 附錄三 148 附錄四 149

    1. Rodgman, A. & Perfetti, T.A. The chemical components of tobacco and tobacco smoke. (CRC Press, 2013).
    2. Hoffmann, D., Djordjevic, M.V. & Hoffmann, I. The Changing Cigarette. Prev. Med. 26, 427-434 (1997).
    3. World Health Orgnization. The top 10 causes of death, <http://www.who.int/mediacentre/factsheets/fs310/en/> (2014).
    4. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management and Prevention of COPD, <http://www.goldcopd.org/> (2014).
    5. Youlden, D.R., Cramb, S.M. & Baade, P.D. The International Epidemiology of Lung Cancer: Geographical Distribution and Secular Trends. J. Thorac. Oncol. 3, 819-831 (2008).
    6. Iribarren, C., Tekawa, I.S., Sidney, S. & Friedman, G.D. Effect of Cigar Smoking on the Risk of Cardiovascular Disease, Chronic Obstructive Pulmonary Disease, and Cancer in Men. N. Engl. J. Med. 340, 1773-1780 (1999).
    7. Skillrud, D.M., Offord, K.P. & Miller, R.D. Higher Risk of Lung Cancer in Chronic Obstructive Pulmonary DiseaseA Prospective, Matched, Controlled Study. Ann. Intern. Med. 105, 503-507 (1986).
    8. Koshiol, J. et al. Chronic Obstructive Pulmonary Disease and Altered Risk of Lung Cancer in a Population-Based Case-Control Study. PLoS One 4, e7380 (2009).
    9. Henson, P.M., Vandivier, R.W. & Douglas, I.S. Cell Death, Remodeling, and Repair in Chronic Obstructive Pulmonary Disease? Proc. Am. Thorac. Soc. 3, 713-717 (2006).
    10. Thorley, A.J. & Tetley, T.D. Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2, 409 (2007).
    11. Hanahan, D. & Weinberg, R.A. The Hallmarks of Cancer. Cell 100, 57-70 (2000).
    12. Franklin, W.A. et al. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J. Clin. Invest. 100, 2133 (1997).
    13. Chang, Y. L. et al. Clonality and prognostic implications of p53 and epidermal growth factor receptor somatic aberrations in multiple primary lung cancers. Clin. Cancer Res. 13, 52-58 (2007).
    14. Houghton, A.M. Mechanistic links between COPD and lung cancer. Nat. Rev. Cancer 13, 233-245 (2013).
    15. Raghu, G. et al. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management. Am. J. Respir. Crit. Care Med. 183, 788-824 (2011).
    16. King, T.E., Pardo, A. & Selman, M. Idiopathic pulmonary fibrosis. Lancet 378, 1949-1961 (2011).
    17. National Heart Lung and Blood Institute (NHLBI). What Is Idiopathic Pulmonary Fibrosis?, <http://www.nhlbi.nih.gov/health/health-topics/topics/ipf/> (2011).
    18. Hubbard, R., Venn, A., Lewis, S. & Britton, J. Lung Cancer and Cryptogenic Fibrosing Alveolitis. Am. J. Respir. Crit. Care Med. 161, 5-8 (2000).
    19. Bouros, D., Hatzakis, K., Labrakis, H. & Zeibecoglou, K. Association of malignancy with diseases causing interstitial pulmonary changes. Chest 121, 1278-1289 (2002).
    20. Mannino, D.M. & Buist, A.S. Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370, 765-773 (2007).
    21. Willis, B.C. et al. Induction of Epithelial-Mesenchymal Transition in Alveolar Epithelial Cells by Transforming Growth Factor-β1. Am. J. Pathol. 166, 1321-1332 (2005).
    22. Larsson, O. et al. Fibrotic Myofibroblasts Manifest Genome-Wide Derangements of Translational Control. PLoS One 3, e3220 (2008).
    23. Marmai, C. et al. Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 301, L71-L78 (2011).
    24. Kim, K.K. et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl. Acad. Sci. U. S. A. 103, 13180-13185 (2006).
    25. Sohal, S.S. et al. Reticular basement membrane fragmentation and potential epithelial mesenchymal transition is exaggerated in the airways of smokers with chronic obstructive pulmonary disease. Respirology 15, 930-938 (2010).
    26. Sohal, S. et al. Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease. Respir. Res. 12, 1-7 (2011).
    27. Sohal, S.S. & Walters, E.H. Epithelial mesenchymal transition (EMT) in small airways of COPD patients. Thorax 68, 783-784 (2013).
    28. Soltermann, A. et al. Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non–small cell lung cancer. Clin. Cancer Res. 14, 7430-7437 (2008).
    29. Yauch, R.L. et al. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin. Cancer Res. 11, 8686-8698 (2005).
    30. Thomson, S. et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non–small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res. 65, 9455-9462 (2005).
    31. Polyak, K. & Weinberg, R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265-273 (2009).
    32. Lee, J.M., Dedhar, S., Kalluri, R. & Thompson, E.W. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172, 973-981 (2006).
    33. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196 (2014).
    34. Trelstad, R.L., Hay, E.D. & Revel, J. P. Cell contact during early morphogenesis in the chick embryo. Dev. Biol. 16, 78-106 (1967).
    35. Greenburg, G. & Hay, E.D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J. Cell Biol. 95, 333-339 (1982).
    36. Brabletz, T. et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl. Acad. Sci. U. S. A. 98, 10356-10361 (2001).
    37. Brabletz, T. To differentiate or not — routes towards metastasis. Nat. Rev. Cancer 12, 425-436 (2012).
    38. Thiery, J.P., Acloque, H., Huang, R.Y.J. & Nieto, M.A. Epithelial-Mesenchymal Transitions in Development and Disease. Cell 139, 871-890 (2009).
    39. Kreidberg, J.A. et al. WT-1 is required for early kidney development. Cell 74, 679-691 (1993).
    40. Rothenpieler, U.W. & Dressler, G.R. Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. Development 119, 711-720 (1993).
    41. Dudley, A.T., Lyons, K.M. & Robertson, E.J. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 9, 2795-2807 (1995).
    42. Stark, K., Vainio, S., Vassileva, G. & McMahon, A.P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372, 679-683 (1994).
    43. Kalluri, R. & Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420-1428 (2009).
    44. Zeisberg, M. & Neilson, E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429-1437 (2009).
    45. Schultz, G.S. & Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 17, 153-162 (2009).
    46. Wynn, T.A. & Ramalingam, T.R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028-1040 (2012).
    47. Piera-Velazquez, S., Li, Z. & Jimenez, S.A. Role of Endothelial-Mesenchymal Transition (EndoMT) in the Pathogenesis of Fibrotic Disorders. Am. J. Pathol. 179, 1074-1080 (2011).
    48. Radisky, D.C., Kenny, P.A. & Bissell, M.J. Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT? J. Cell. Biochem. 101, 830-839 (2007).
    49. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341-350 (2002).
    50. Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442-454 (2002).
    51. Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415-428 (2007).
    52. Yang, J. & Weinberg, R.A. Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis. Dev. Cell 14, 818-829 (2008).
    53. Rhim, Andrew D. et al. EMT and Dissemination Precede Pancreatic Tumor Formation. Cell 148, 349-361 (2012).
    54. Trimboli, A.J. et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 68, 937-945 (2008).
    55. Pérez-Losada, J., Sánchez-Martín, M., Pérez-Caro, M., Pérez-Mancera, P.A. & Sánchez-García, I. The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene 22, 4205-4211 (2003).
    56. Wang, X. et al. Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene 23, 474-482 (2004).
    57. Kwok, W.K. et al. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res. 65, 5153-5162 (2005).
    58. Arumugam, T. et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 69, 5820-5828 (2009).
    59. Mani, S.A. et al. The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell 133, 704-715 (2008).
    60. Robson, E.J.D., Khaled, W.T., Abell, K. & Watson, C.J. Epithelial-to-mesenchymal transition confers resistance to apoptosis in three murine mammary epithelial cell lines. Differentiation 74, 254-264 (2006).
    61. Yu, F. et al. let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells. Cell 131, 1109-1123 (2007).
    62. Fidler, I.J. & Poste, G. The “seed and soil” hypothesis revisited. Lancet Oncol. 9, 808 (2008).
    63. Kemler, R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 9, 317-321 (1993).
    64. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619-627 (1995).
    65. Duband, J. L. et al. Adhesion molecules during somitogenesis in the avian embryo. J. Cell Biol. 104, 1361-1374 (1987).
    66. Zeisberg, M. et al. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964-968 (2003).
    67. Vincent-Salomon, A. & Thiery, J.P. Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res. 5, 101-106 (2003).
    68. Kalluri, R. & Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776-1784 (2003).
    69. Huber, M.A., Kraut, N. & Beug, H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548-558 (2005).
    70. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190-193 (1998).
    71. Frixen, U.H. et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell Biol. 113, 173-185 (1991).
    72. Berx, G. et al. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 14, 6107 (1995).
    73. Berx, G., Becker, K. F., Höfler, H. & van Roy, F. Mutations of the human E-cadherin (CDH1) gene. Hum. Mutat. 12, 226-237 (1998).
    74. Oda, T. et al. E-cadherin gene mutations in human gastric carcinoma cell lines. Proc. Natl. Acad. Sci. U. S. A. 91, 1858-1862 (1994).
    75. Becker, K. F. et al. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 54, 3845-3852 (1994).
    76. Katsumoto, T., Mitsushima, A. & Kurimura, T. The role of the vimentin intermediate filaments in rat 3Y1 cells elucidated by immunoelectron microscopy and computer-graphic reconstruction. Biol. Cell 68, 139-146 (1990).
    77. Goldman, R.D., Khuon, S., Chou, Y.H., Opal, P. & Steinert, P.M. The function of intermediate filaments in cell shape and cytoskeletal integrity. J. Cell Biol. 134, 971-983 (1996).
    78. Sarria, A., Panini, S. & Evans, R. A functional role for vimentin intermediate filaments in the metabolism of lipoprotein-derived cholesterol in human SW-13 cells. J. Biol. Chem. 267, 19455-19463 (1992).
    79. Ivaska, J., Pallari, H. M., Nevo, J. & Eriksson, J.E. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313, 2050-2062 (2007).
    80. Steinert, P. & Roop, D. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57, 593-625 (1988).
    81. Colucci-Guyon, E. et al. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79, 679-694 (1994).
    82. Fléchon, J. E., Degrouard, J. & Fléchon, B. Gastrulation events in the prestreak pig embryo: Ultrastructure and cell markers. Genesis 38, 13-25 (2004).
    83. Boyer, B., Tucker, G.C., Vallés, A.M., Gavrilovic, J. & Thiery, J.P. Reversible transition towards a fibroblastic phenotype in a rat carcinoma cell line. Int. J. Cancer 44, 69-75 (1989).
    84. Gilles, C. et al. Vimentin contributes to human mammary epithelial cell migration. J. Cell Sci. 112, 4615-4625 (1999).
    85. Gilles, C. et al. Transactivation of vimentin by β-catenin in human breast cancer cells. Cancer Res. 63, 2658-2664 (2003).
    86. Witzgall, R., Brown, D., Schwarz, C. & Bonventre, J.V. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J. Clin. Invest. 93, 2175-2188 (1994).
    87. Skalli, O. et al. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103, 2787-2796 (1986).
    88. Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127, 526-537 (2007).
    89. Sarrió, D. et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 68, 989-997 (2008).
    90. Mani, S.A. et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc. Natl. Acad. Sci. U. S. A. 104, 10069-10074 (2007).
    91. Jayachandran, A. et al. SNAI transcription factors mediate epithelial-mesenchymal transition in lung fibrosis. Thorax, thx. 2009.121798 (2009).
    92. Pozharskaya, V. et al. Twist: A Regulator of Epithelial-Mesenchymal Transition in Lung Fibrosis. PLoS One 4, e7559 (2009).
    93. Zou, W., Zou, Y., Zhao, Z., Li, B. & Ran, P. Nicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 304, L199-L209 (2013).
    94. Zhang, H. et al. Cigarette smoke extract stimulates epithelial–mesenchymal transition through Src activation. Free Radic. Biol. Med. 52, 1437-1442 (2012).
    95. Jeffery, P.K. Remodeling and Inflammation of Bronchi in Asthma and Chronic Obstructive Pulmonary Disease. Proc. Am. Thorac. Soc. 1, 176-183 (2004).
    96. Dasari, V., Gallup, M., Lemjabbar, H., Maltseva, I. & McNamara, N. Epithelial–Mesenchymal Transition in Lung Cancer. Am. J. Respir. Cell Mol. Biol. 35, 3-9 (2006).
    97. Walser, T. et al. Smoking and Lung Cancer. Proc. Am. Thorac. Soc. 5, 811-815 (2008).
    98. Pittenger, M.F. et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 284, 143-147 (1999).
    99. Zuk, P.A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279-4295 (2002).
    100. Bosch, P. et al. Osteoprogenitor cells within skeletal muscle. J. Orthop. Res. 18, 933-944 (2000).
    101. Campagnoli, C. et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98, 2396-2402 (2001).
    102. Kawashima, N. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Arch. Oral Biol. 57, 1439-1458 (2012).
    103. Aggarwal, S. & Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815-1822 (2005).
    104. Prockop, D.J. & Youn Oh, J. Mesenchymal Stem/Stromal Cells (MSCs): Role as Guardians of Inflammation. Mol. Ther. 20, 14-20 (2012).
    105. Gnecchi, M., Zhang, Z., Ni, A. & Dzau, V.J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 103, 1204-1219 (2008).
    106. Gupta, N. et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J. Immunol. 179, 1855-1863 (2007).
    107. Baber, S.R. et al. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 292, H1120-H1128 (2007).
    108. Ortiz, L.A. et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. U. S. A. 100, 8407-8411 (2003).
    109. Moodley, Y. et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am. J. Pathol. 175, 303-313 (2009).
    110. Huh, J.W. et al. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am. J. Physiol. Lung Cell Mol. Physiol. 301, L255-L266 (2011).
    111. Schweitzer, K.S. et al. Adipose Stem Cell Treatment in Mice Attenuates Lung and Systemic Injury Induced by Cigarette Smoking. Am. J. Respir. Crit. Care Med. 183, 215-225 (2011).
    112. Abreu, S., Antunes, M., Pelosi, P., Morales, M. & Rocco, P.M. Mechanisms of cellular therapy in respiratory diseases. Intensive Care Med. 37, 1421-1431 (2011).
    113. Kim, S.Y. et al. Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage. Am. J. Physiol. Lung Cell Mol. Physiol. 302, L891-908 (2012).
    114. Nathan, S. et al. Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng. 9, 733-744 (2003).
    115. Schäffler, A. & Büchler, C. Concise Review: Adipose Tissue-Derived Stromal Cells—Basic and Clinical Implications for Novel Cell-Based Therapies. Stem Cells 25, 818-827 (2007).
    116. Adamson, J., Haswell, L.E., Phillips, G. & Gaça, M.D. In Vitro Models of Chronic Obstructive Pulmonary Disease (COPD), in Bronchitis. (ed. I. Martín-Loeches) (InTech, 2011).
    117. Shintani, Y., Maeda, M., Chaika, N., Johnson, K.R. & Wheelock, M.J. Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor–β signaling. Am. J. Respir. Cell Mol. Biol. 38, 95-104 (2008).
    118. Calcabrini, A. et al. Fine environmental particulate engenders alterations in human lung epithelial A549 cells. Environ. Res. 95, 82-91 (2004).
    119. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cancer Res. 19, 156-172 (2009).
    120. Kasai, H., Allen, J.T., Mason, R.M., Kamimura, T. & Zhang, Z. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir. Res. 6, 56 (2005).
    121. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63 (1983).
    122. Scudiero, D.A. et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827-4833 (1988).
    123. Slater, T., Sawyer, B. & Sträuli, U. Studies on succinate-tetrazolium reductase systems: III. Points of coupling of four different tetrazolium salts III. Points of coupling of four different tetrazolium salts. Biochim. Biophys. Acta 77, 383-393 (1963).
    124. Ishiyama, M., Shiga, M., Sasamoto, K., Mizoguchi, M. & He, P. G. A New Sulfonated Tetrazolium Salt That Produces a Highly Water-Soluble Formazan Dye. Chem. Pharm. Bull. (Tokyo) 41, 1118-1122 (1993).
    125. Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J. & Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24, 1121-1131 (2003).
    126. Korzeniewski, C. & Callewaert, D.M. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods 64, 313-320 (1983).
    127. Zhang, H. et al. Cigarette smoke extract stimulates epithelial–mesenchymal transition through Src activation. Free Radic. Biol. Med. 52, 1437-1442 (2012).
    128. Kawata, M. et al. TGF-β-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. J. Biochem. 151, 205-216 (2012).
    129. Vuoriluoto, K. et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30, 1436-1448 (2010).
    130. Drummond, S.P. & Allen, T.D. From Live-Cell Imaging to Scanning Electron Microscopy (SEM): The Use of Green Fluorescent Protein (GFP) as a Common Label, in Methods in Cell Biology, Vol. Volume 88. (ed. D.A. Terence) 97-108 (Academic Press, 2008).
    131. Fischer, E.R., Hansen, B.T., Nair, V., Hoyt, F.H. & Dorward, D.W. Scanning Electron Microscopy, in Current Protocols in Microbiology (John Wiley & Sons, Inc., 2005).
    132. 陳家全, 李家維 & 楊瑞森 生物電子顯微鏡學. (國科會精儀中心, 新竹巿; 1991).
    133. Passey, S., Pellegrin, S. & Mellor, H. Scanning Electron Microscopy of Cell Surface Morphology, in Current Protocols in Cell Biology (John Wiley & Sons, Inc., 2001).
    134. Ishigaki, Y. et al. Scanning electron microscopy with an ionic liquid reveals the loss of mitotic protrusions of cells during the epithelial–mesenchymal transition. Microsc. Res. Tech. 74, 1024-1031 (2011).
    135. Reimer, L. Scanning electron microscopy : physics of image formation and microanalysis, Edn. 2nd completely rev. and updated. (Springer, Berlin ; New York; 1998).
    136. Khursheed, A. Scanning electron microscope optics and spectrometers. (World Scientific, Singapore ; Hackensack, NJ; 2011).
    137. Daniel, T.O., Liu, H., Morrow, J.D., Crews, B.C. & Marnett, L.J. Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res. 59, 4574-4577 (1999).
    138. Huang, Z. H. et al. Migratory properties of cultured olfactory ensheathing cells by single-cell migration assay. Cell Res. 18, 479-490 (2008).
    139. Kim, J.H. et al. Transtorming Growth Factor β1 Induces Epithelial-to-Mesenchymal Transition of A549 Cells. J. Korean Med. Sci. 22, 898-904 (2007).
    140. Rho, J.K. et al. Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small cell lung cancer cell line. Lung Cancer 63, 219-226 (2009).
    141. Zhou, G. et al. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. Am. J. Physiol. Lung Cell Mol. Physiol. 297, L1120-L1130 (2009).
    142. Lampugnani, M.G., Orsenigo, F., Gagliani, M.C., Tacchetti, C. & Dejana, E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 174, 593-604 (2006).
    143. Wei, Y. et al. NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat. Hypertension 50, 384-391 (2007).
    144. Arai, Y. et al. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat. Commun. 2, 154 (2011).
    145. Qiao, L. y., Zhande, R., Jetton, T.L., Zhou, G. & Sun, X.J. In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J. Biol. Chem. 277, 26530-26539 (2002).
    146. Bonifacino, J.S. & Dell'Angelica, E.C. Immunoprecipitation, in Current Protocols in Cell Biology (John Wiley & Sons, Inc., 2001).
    147. Gallagher, S.R. One-Dimensional SDS Gel Electrophoresis of Proteins, in Current Protocols in Cell Biology (John Wiley & Sons, Inc., 2001).
    148. Gallagher, S., Winston, S.E., Fuller, S.A. & Hurrell, J.G.R. Immunoblotting and Immunodetection, in Current Protocols in Cell Biology (John Wiley & Sons, Inc., 2001).
    149. Bowman, C.C., Rasley, A., Tranguch, S.L. & Marriott, I. Cultured astrocytes express toll-like receptors for bacterial products. Glia 43, 281-291 (2003).
    150. Marriott, I. & Bost, K.L. IL-4 and IFN-γ up-regulate substance P receptor expression in murine peritoneal macrophages. J. Immunol. 165, 182-191 (2000).
    151. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25-29 (2000).
    152. Veljkovic, E., Jiricny, J., Menigatti, M., Rehrauer, H. & Han, W. Chronic exposure to cigarette smoke condensate in vitro induces epithelial to mesenchymal transition-like changes in human bronchial epithelial cells, BEAS-2B. Toxicol. In Vitro 25, 446-453 (2011).
    153. Francescopaolo Di Cello, V. et al. Cigarette smoke induces epithelial to mesenchymal transition and increases the metastatic ability of breast cancer cells. Mol. Cancer 12, 90 (2013).
    154. Byers, L.A. et al. An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 19, 279-290 (2013).
    155. Green, D.R. & Reed, J.C. Mitochondria and Apoptosis. Science 281, 1309-1312 (1998).
    156. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922-2933 (2001).
    157. Lobner, D. Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? J. Neurosci. Methods 96, 147-152 (2000).
    158. Hoshino, Y. et al. Cytotoxic effects of cigarette smoke extract on an alveolar type II cell-derived cell line. Am. J. Physiol. Lung Cell Mol. Physiol. 281, L509-L516 (2001).
    159. Wickenden, J.A. et al. Cigarette Smoke Prevents Apoptosis through Inhibition of Caspase Activation and Induces Necrosis. Am. J. Respir. Cell Mol. Biol. 29, 562-570 (2003).
    160. Decker, T. & Lohmann-Matthes, M. L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 115, 61-69 (1988).
    161. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. & Lipton, S.A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. U. S. A. 92, 7162-7166 (1995).
    162. Lee, Y.C. et al. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 294, L921-L931 (2008).
    163. Kinnaird, T. et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678-685 (2004).
    164. Chen, L., Tredget, E.E., Wu, P.Y.G. & Wu, Y. Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS One 3, e1886 (2008).
    165. Hung, S. C., Pochampally, R.R., Chen, S. C., Hsu, S. C. & Prockop, D.J. Angiogenic Effects of Human Multipotent Stromal Cell Conditioned Medium Activate the PI3K-Akt Pathway in Hypoxic Endothelial Cells to Inhibit Apoptosis, Increase Survival, and Stimulate Angiogenesis. Stem Cells 25, 2363-2370 (2007).
    166. Mirotsou, M. et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl. Acad. Sci. U. S. A. 104, 1643-1648 (2007).
    167. Mangi, A.A. et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9, 1195-1201 (2003).
    168. Tiwari, N., Gheldof, A., Tatari, M. & Christofori, G. EMT as the ultimate survival mechanism of cancer cells. Semin. Cancer Biol. 22, 194-207 (2012).
    169. Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751 (2010).
    170. Padua, D. & Massague, J. Roles of TGFβ in metastasis. Cell Res. 19, 89-102 (2009).
    171. Fan, J. M. et al. Transforming growth factor-β regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int. 56, 1455-1467 (1999).
    172. Grände, M. et al. Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J. Cell Sci. 115, 4227-4236 (2002).
    173. Tamiya, S., Liu, L. & Kaplan, H.J. Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact. Invest. Ophthalmol. Vis. Sci. 51, 2755-2763 (2010).
    174. Yilmaz, M. & Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28, 15-33 (2009).
    175. Fanizza, C., Fresegna, A.M., Maiello, R., Paba, E. & Cavallo, D. Evaluation of cytotoxic concentration–time response in A549 cells exposed to respirable α-quartz. J. Appl. Toxicol. 29, 537-544 (2009).
    176. Liang, C. C., Park, A.Y. & Guan, J. L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329-333 (2007).
    177. Lauffenburger, D.A. & Horwitz, A.F. Cell Migration: A Physically Integrated Molecular Process. Cell 84, 359-369 (1996).
    178. Ridley, A.J. et al. Cell Migration: Integrating Signals from Front to Back. Science 302, 1704-1709 (2003).
    179. Lannan, S., Donaldson, K., Brown, D. & MacNee, W. Effect of cigarette smoke and its condensates on alveolar epithelial cell injury in vitro. Am. J. Physiol. Lung Cell Mol. Physiol. 10, L92 (1994).
    180. Ramage, L., Jones, A.C. & Whelan, C.J. Induction of apoptosis with tobacco smoke and related products in A549 lung epithelial cells in vitro. J. Inflamm. 3, 3 (2006).
    181. Eurlings, I.M. et al. Cigarette Smoke Extract Induces a Phenotypic Shift in Epithelial Cells; Involvement of HIF1α in Mesenchymal Transition. PLoS One 9, e107757 (2014).
    182. Onder, T.T. et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645-3654 (2008).
    183. Chen, H., Paradies, N.E., Fedor-Chaiken, M. & Brackenbury, R. E-cadherin mediates adhesion and suppresses cell motility via distinct mechanisms. J. Cell Sci. 110, 345-356 (1997).
    184. Shore, E.M. & Nelson, W. Biosynthesis of the cell adhesion molecule uvomorulin (E-cadherin) in Madin-Darby canine kidney epithelial cells. J. Biol. Chem. 266, 19672-19680 (1991).
    185. Wheelock, M.J., Shintani, Y., Maeda, M., Fukumoto, Y. & Johnson, K.R. Cadherin switching. J. Cell Sci. 121, 727-735 (2008).
    186. Theveneau, E. & Mayor, R. Cadherins in collective cell migration of mesenchymal cells. Curr. Opin. Cell Biol. 24, 677-684 (2012).
    187. Chidgey, M. & Dawson, C. Desmosomes: a role in cancer? Br. J. Cancer 96, 1783-1787 (2007).
    188. Klymkowsky, M.W. & Savagner, P. Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. Am. J. Pathol. 174, 1588-1593 (2009).
    189. Koli, K. et al. Bone Morphogenetic Protein-4 Inhibitor Gremlin Is Overexpressed in Idiopathic Pulmonary Fibrosis. Am. J. Pathol. 169, 61-71 (2006).
    190. Grünert, S., Jechlinger, M. & Beug, H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell Biol. 4, 657-665 (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE