研究生: |
張宇清 Yu-Ching Chang |
---|---|
論文名稱: |
抑癌因子p53在核甘酸切除修復機制中的直接涉入 Direct involvement of the tumor suppressor p53 in nucleotide excision repair |
指導教授: |
劉銀樟
Yin-Chang Liu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 抑癌因子p53 、核甘酸切除修復 、紫外線 、彗星-核萃取物分析法 |
外文關鍵詞: | tumor suppressor p53, nucleotide excision repair, UV, Comet-NE assay |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The tumor suppressor p53 enhances repair of UVC-induced DNA damage. The comet-nuclear extract (comet-NE) assay, a conventional alkaline comet assay which includes a nuclear digestion step, was used to examine the effects of p53 on the excision activity of nuclear extracts (NEs). In contrast with untreated NEs, NEs immunodepleted of p53 or NEs of p53-null cells were unable to excise UVC-induced DNA adducts. Introduction of p53 by transfection restored the excision activity to NEs of p53-null cells. Deletion of the N-terminal 99 amino acids and/or the C-terminal 75 amino acids of p53 barely affected the excision activity, whereas further deletion of the C-terminus of p53 by another 20 amino acids completely abolished the excision activity of NEs. Immunostaining following localized UV irradiation was used to examine the effects of p53 on the recruitment of repair proteins for nucleotide excision repair (NER). Although recruitment of XPC occurred regardless of the presence of p53, the recruitment of XPB was p53-dependent. However, p53 with the 95 amino acid deletion at its C-terminus was unable to support this recruitment of XPB. Consistently, intact p53 or C-terminal 75 residus truncated version (but not the C-terminal 95 residue truncated version) was detected in co-immunoprecipitation assays with an anti-XPB antibody. These results support the hypothesis that p53 facilitates NER through direct involvement by protein-protein interactions.
抑癌基因P53可以促進細胞修補紫外線所造成的DNA損傷。在本實驗中利用彗星-核萃取物分析法(藉由鹼性彗星分析法引進核萃取物切割的動作)來測試P53對於核萃取物切割能力之影響。相對於未做任何處理之核萃取物,利用免疫耗竭方式由核萃取物中移除P53或是不含P53的細胞核取萃物無法去切割紫外線造成之DNA損傷。利用P53穩定性轉染之不含P53細胞的核萃取物可以回復其切割的活性。切除P53 N端99個及C端75個胺基酸不會影響其切割之活性,然而再多切除C端20個胺基酸則會完全抑制其切割之活性。利用局部紫外線照射後進行免疫染色的方法來研究P53如何影響核酸切除修復中修補蛋白質聚集之情形。雖然XPC之聚集與P53的存在與否無關,但XPB則與P53有關。當切除P53 C端95個胺基酸則XPB無法聚集。同樣的,利用共免疫沈澱方法發現只有完整的P53或是切除P53 C端75個胺基酸會和XPB一起被抗體抓下來,而P53 C端切除95個胺基酸的則不會。這些結果支持我們的假設,P53是藉由蛋白質之間的交互作用直接來促進核酸切除修復。
Adimoolam, S. and Ford, J.M. (2002) p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci U S A, 99, 12985-12990.
Allison, S.J. and Milner, J. (2004) Remodelling chromatin on a global scale: a novel protective function of p53. Carcinogenesis, 25, 1551-1557.
Araujo, S.J., Nigg, E.A. and Wood, R.D. (2001) Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol, 21, 2281-2291.
Araujo, S.J., Tirode, F., Coin, F., Pospiech, H., Syvaoja, J.E., Stucki, M., Hubscher, U., Egly, J.M. and Wood, R.D. (2000) Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev, 14, 349-359.
Bakalkin, G., Yakovleva, T., Selivanova, G., Magnusson, K.P., Szekely, L., Kiseleva, E., Klein, G., Terenius, L. and Wiman, K.G. (1994) p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Natl Acad Sci U S A, 91, 413-417.
Batty, D., Rapic'-Otrin, V., Levine, A.S. and Wood, R.D. (2000) Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol, 300, 275-290.
Bayle, J.H., Elenbaas, B. and Levine, A.J. (1995) The carboxyl-terminal domain of the p53 protein regulates sequence-specific DNA binding through its nonspecific nucleic acid-binding activity. Proc Natl Acad Sci U S A, 92, 5729-5733.
Bergstein, T., Henis, Y. and Cavari, B.Z. (1979) Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Can J Microbiol, 25, 999-1007.
Biggerstaff, M., Szymkowski, D.E. and Wood, R.D. (1993) Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. Embo J, 12, 3685-3692.
Bode, A.M. and Dong, Z. (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer, 4, 793-805.
Bossy-Wetzel, E., Newmeyer, D.D. and Green, D.R. (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. Embo J, 17, 37-49.
Buttke, T.M., McCubrey, J.A. and Owen, T.C. (1993) Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods, 157, 233-240.
Chang, Y.C., Liao, C.B., Hsieh, P.Y., Liou, M.L. and Liu, Y.C. (2008) Expression of tumor suppressor p53 facilitates DNA repair but not UV-induced G2/M arrest or apoptosis in Chinese hamster ovary CHO-K1 cells. J Cell Biochem, 103, 528-537.
Cho, Y., Gorina, S., Jeffrey, P.D. and Pavletich, N.P. (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265, 346-355.
Clingen, P.H., Arlett, C.F., Cole, J., Waugh, A.P., Lowe, J.E., Harcourt, S.A., Hermanova, N., Roza, L., Mori, T., Nikaido, O. and et al. (1995) Correlation of UVC and UVB cytotoxicity with the induction of specific photoproducts in T-lymphocytes and fibroblasts from normal human donors. Photochem Photobiol, 61, 163-170.
Collins, A.R., Dusinska, M., Horvathova, E., Munro, E., Savio, M. and Stetina, R. (2001) Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay. Mutagenesis, 16, 297-301.
Diffey, B.L. (2002) Sources and measurement of ultraviolet radiation. Methods, 28, 4-13.
Evans, E., Fellows, J., Coffer, A. and Wood, R.D. (1997a) Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. Embo J, 16, 625-638.
Evans, E., Moggs, J.G., Hwang, J.R., Egly, J.M. and Wood, R.D. (1997b) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. Embo J, 16, 6559-6573.
Eveno, E., Bourre, F., Quilliet, X., Chevallier-Lagente, O., Roza, L., Eker, A.P., Kleijer, W.J., Nikaido, O., Stefanini, M., Hoeijmakers, J.H. and et al. (1995) Different removal of ultraviolet photoproducts in genetically related xeroderma pigmentosum and trichothiodystrophy diseases. Cancer Res, 55, 4325-4332.
Fields, S. and Jang, S.K. (1990) Presence of a potent transcription activating sequence in the p53 protein. Science, 249, 1046-1049.
Foord, O.S., Bhattacharya, P., Reich, Z. and Rotter, V. (1991) A DNA binding domain is contained in the C-terminus of wild type p53 protein. Nucleic Acids Res, 19, 5191-5198.
Ford, J.M. and Hanawalt, P.C. (1995) Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc Natl Acad Sci U S A, 92, 8876-8880.
Ford, J.M. and Hanawalt, P.C. (1997) Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem, 272, 28073-28080.
Friedberg, E.C. (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer, 1, 22-33.
Funk, W.D., Pak, D.T., Karas, R.H., Wright, W.E. and Shay, J.W. (1992) A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol, 12, 2866-2871.
Hoeijmakers, J.H. (2001) Genome maintenance mechanisms for preventing cancer. Nature, 411, 366-374.
Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C.C. (1991) p53 mutations in human cancers. Science, 253, 49-53.
Hupp, T.R. and Lane, D.P. (1994) Allosteric activation of latent p53 tetramers. Curr Biol, 4, 865-875.
Hupp, T.R., Meek, D.W., Midgley, C.A. and Lane, D.P. (1992) Regulation of the specific DNA binding function of p53. Cell, 71, 875-886.
Hwang, B.J., Ford, J.M., Hanawalt, P.C. and Chu, G. (1999) Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci U S A, 96, 424-428.
Jayaraman, J. and Prives, C. (1995) Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell, 81, 1021-1029.
Katsumi, S., Kobayashi, N., Imoto, K., Nakagawa, A., Yamashina, Y., Muramatsu, T., Shirai, T., Miyagawa, S., Sugiura, S., Hanaoka, F., Matsunaga, T., Nikaido, O. and Mori, T. (2001) In situ visualization of ultraviolet-light-induced DNA damage repair in locally irradiated human fibroblasts. J Invest Dermatol, 117, 1156-1161.
Kern, S.E., Kinzler, K.W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C. and Vogelstein, B. (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science, 252, 1708-1711.
Kobayashi, N., Katsumi, S., Imoto, K., Nakagawa, A., Miyagawa, S., Furumura, M. and Mori, T. (2001) Quantitation and visualization of ultraviolet-induced DNA damage using specific antibodies: application to pigment cell biology. Pigment Cell Res, 14, 94-102.
Lambert, B., Ringborg, U. and Skoog, L. (1979) Age-related decrease of ultraviolet light-induced DNA repair synthesis in human peripheral leukocytes. Cancer Res, 39, 2792-2795.
Leveillard, T., Andera, L., Bissonnette, N., Schaeffer, L., Bracco, L., Egly, J.M. and Wasylyk, B. (1996) Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. Embo J, 15, 1615-1624.
Liang, S.H. and Clarke, M.F. (1999) A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem, 274, 32699-32703.
Liang, S.H. and Clarke, M.F. (2001) Regulation of p53 localization. Eur J Biochem, 268, 2779-2783.
Lin, J., Chen, J., Elenbaas, B. and Levine, A.J. (1994) Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev, 8, 1235-1246.
Lowe, S.W., Ruley, H.E., Jacks, T. and Housman, D.E. (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell, 74, 957-967.
Matsumura, Y. and Ananthaswamy, H.N. (2004) Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol, 195, 298-308.
Matsunaga, T., Mu, D., Park, C.H., Reardon, J.T. and Sancar, A. (1995) Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J Biol Chem, 270, 20862-20869.
Meek, D.W., Simon, S., Kikkawa, U. and Eckhart, W. (1990) The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. Embo J, 9, 3253-3260.
Mitchell, D.L. (1988) The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol, 48, 51-57.
Mitchell, D.L., Haipek, C.A. and Clarkson, J.M. (1985) (6-4)Photoproducts are removed from the DNA of UV-irradiated mammalian cells more efficiently than cyclobutane pyrimidine dimers. Mutat Res, 143, 109-112.
Mone, M.J., Volker, M., Nikaido, O., Mullenders, L.H., van Zeeland, A.A., Verschure, P.J., Manders, E.M. and van Driel, R. (2001) Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep, 2, 1013-1017.
Mori, T., Nakane, M., Hattori, T., Matsunaga, T., Ihara, M. and Nikaido, O. (1991) Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6-4)photoproduct from the same mouse immunized with ultraviolet-irradiated DNA. Photochem Photobiol, 54, 225-232.
Nishiwaki, Y., Kobayashi, N., Imoto, K., Iwamoto, T.A., Yamamoto, A., Katsumi, S., Shirai, T., Sugiura, S., Nakamura, Y., Sarasin, A., Miyagawa, S. and Mori, T. (2004) Trichothiodystrophy fibroblasts are deficient in the repair of ultraviolet-induced cyclobutane pyrimidine dimers and (6-4)photoproducts. J Invest Dermatol, 122, 526-532.
Offer, H., Zurer, I., Banfalvi, G., Reha'k, M., Falcovitz, A., Milyavsky, M., Goldfinger, N. and Rotter, V. (2001) p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress. Cancer Res, 61, 88-96.
Petit, C. and Sancar, A. (1999) Nucleotide excision repair: from E. coli to man. Biochimie, 81, 15-25.
Pietenpol, J.A., Tokino, T., Thiagalingam, S., el-Deiry, W.S., Kinzler, K.W. and Vogelstein, B. (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci U S A, 91, 1998-2002.
Rubbi, C.P. and Milner, J. (2003) p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. Embo J, 22, 975-986.
Sengupta, S. and Harris, C.C. (2005) p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol, 6, 44-55.
Singh, N.P., McCoy, M.T., Tice, R.R. and Schneider, E.L. (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res, 175, 184-191.
Smith, M.L., Chen, I.T., Zhan, Q., O'Connor, P.M. and Fornace, A.J., Jr. (1995) Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene, 10, 1053-1059.
Smith, M.L., Ford, J.M., Hollander, M.C., Bortnick, R.A., Amundson, S.A., Seo, Y.R., Deng, C.X., Hanawalt, P.C. and Fornace, A.J., Jr. (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol, 20, 3705-3714.
Smith, M.L. and Fornace, A.J., Jr. (1997) p53-mediated protective responses to UV irradiation. Proc Natl Acad Sci U S A, 94, 12255-12257.
Sturzbecher, H.W., Brain, R., Addison, C., Rudge, K., Remm, M., Grimaldi, M., Keenan, E. and Jenkins, J.R. (1992) A C-terminal alpha-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene, 7, 1513-1523.
Sugasawa, K., Ng, J.M., Masutani, C., Iwai, S., van der Spek, P.J., Eker, A.P., Hanaoka, F., Bootsma, D. and Hoeijmakers, J.H. (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell, 2, 223-232.
Takenaka, I., Morin, F., Seizinger, B.R. and Kley, N. (1995) Regulation of the sequence-specific DNA binding function of p53 by protein kinase C and protein phosphatases. J Biol Chem, 270, 5405-5411.
Tornaletti, S. and Pfeifer, G.P. (1996) UV damage and repair mechanisms in mammalian cells. Bioessays, 18, 221-228.
Volker, M., Mone, M.J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J.H., van Driel, R., van Zeeland, A.A. and Mullenders, L.H. (2001) Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell, 8, 213-224.
Vousden, K.H. and Lu, X. (2002) Live or let die: the cell's response to p53. Nat Rev Cancer, 2, 594-604.
Wang, Q.E., Zhu, Q., Wani, M.A., Wani, G., Chen, J. and Wani, A.A. (2003) Tumor suppressor p53 dependent recruitment of nucleotide excision repair factors XPC and TFIIH to DNA damage. DNA Repair (Amst), 2, 483-499.
Wang, X.W., Yeh, H., Schaeffer, L., Roy, R., Moncollin, V., Egly, J.M., Wang, Z., Freidberg, E.C., Evans, M.K., Taffe, B.G. and et al. (1995) p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet, 10, 188-195.
Wani, M.A., El-Mahdy, M.A., Hamada, F.M., Wani, G., Zhu, Q., Wang, Q.E. and Wani, A.A. (2002) Efficient repair of bulky anti-BPDE DNA adducts from non-transcribed DNA strand requires functional p53 but not p21(waf1/cip1) and pRb. Mutat Res, 505, 13-25.
Wolkowicz, R., Peled, A., Elkind, N.B. and Rotter, V. (1995) Augmented DNA-binding activity of p53 protein encoded by a carboxyl-terminal alternatively spliced mRNA is blocked by p53 protein encoded by the regularly spliced form. Proc Natl Acad Sci U S A, 92, 6842-6846.
Zhao, R., Gish, K., Murphy, M., Yin, Y., Notterman, D., Hoffman, W.H., Tom, E., Mack, D.H. and Levine, A.J. (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev, 14, 981-993.