簡易檢索 / 詳目顯示

研究生: 鄧宇辰
Teng, Yu-Chen
論文名稱: 純鎳、Ni-20Cr與鎳基超合金Inconel 740H於750到900°C下乾、濕空氣中之氧化行為與動力學
Incipient Oxidation Behaviors and Kinetics of Pure Nickel, Ni-20Cr and Ni-based Superalloy Inconel 740H in Dry and Humid Air at 750-900°C
指導教授: 藍貫哲
Lan, Kuan-Che
口試委員: 開物
Kai, Wu
黃嘉宏
Huang, Jia-Hong
葉宗洸
Yeh, Tsung-Kuang
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 83
中文關鍵詞: 鎳基超合金Inconel 740H高溫氧化氧化層厚度濕空氣純鎳鎳-20鉻
外文關鍵詞: Nickel-based superalloy, Inconel 740H, High temperature oxidation, Thickness of oxide layer, Humid air, Pure nickel, Ni-20Cr
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎳基超合金Inconel 740H為先進超超臨界(A-USC)燃煤發電系統的候選結構材料。本研究利用熱重分析儀(TGA)對純鎳、Ni-20Cr與Inconel 740H進行750、800、850和900 °C下24小時的增重行為分析,探討該溫度下的短期之氧化動力學,而三樣材料之增重結果皆符合前期線性速率、中後期拋物線速率的combine kinetics,其增重速率由快至慢依序為純鎳、Inconel 740H與Ni-20Cr。此外,利用X光繞射分析儀(XRD)、帶有能量色散X射線分析儀(EDS)的高解析度場發射式電子顯微鏡(HRFEG-SEM)、聚焦離子束顯微系統(FIB-SEM)與歐傑暨化學分析電子掃描微探儀(AES/XPS)對其氧化層進行表面微結構與橫截面微結構觀察、結構判定與成份分析後,得知純鎳在此實驗條件下,氧化層為單一多孔結構,其組成相為Cubic-NiO。Ni-20Cr則為緻密的單一相氧化層,結構為Rhombohedral-Cr2O3。Inconel 740H具有多層結構,外氧化層由rutile-TiO2、spinel-MnCr2O4與rhombohedral-Cr2O3組成,內氧化區域則包括了α-Al2O3與rutile-TiO2之析出物。此外,本研究亦利用上掀式管狀爐通入水氣氛圍在750與900°C下進行24小時之高溫實驗,實驗結果顯示水氣對於純鎳的氧化速率並無太大影響,而Ni-20Cr會因水氣的加入導致氧化層的揮發,並由原本的增重行為轉變成質量損失。Inconel 740H在750°C時有無水氣對於氧化速率的影響並不大,但在900°C時,氧化速率則因水氣的加入而提高。希望本研究能對於了解Inconel 740H在乾、濕空氣氛圍中的前期氧化機制與行為有所幫助,並期望提供Inconel 740H在將來應用或改良上的關鍵參數。


    Nickel-based superalloy Inconel 740H is a candidate structural material for advanced ultra-supercritical (A-USC)coal-fired power generation systems. To explore the short-term oxidation kinetics, the thermogravimetric analyzer (TGA) was used to analyze the mass gain behavior of pure nickel, Ni-20Cr and Inconel 740H at 750, 800, 850 and 900°C for 24 hours in this study. The mass gain results of these three materials all follow the combine kinetics, corresponding with linear rate law at early stage and with parabolic rate law at mid and later stage. The mass gain rate from fast to slow are pure nickel, Inconel 740H and Ni-20Cr, respectively. Using X-Ray diffraction analysis (XRD), high-resolution field emission gun scanning electron microscope (HRFEG-SEM) with energy-dispersive X-ray spectroscopy (EDS) and focused ion beam scanning electron microscopy (FIB-SEM), the surface and cross-sectional morphology were observed using HRFEG-SEM and FIB-SEM, and structure determination and composition analysis of the oxide layer were finished using XRD, EDS system and Auger electron spectroscopy scanning microprobe. It is known that the oxide of pure nickel is a porous single structure, which is with the phase of cubic-NiO. Besides, it’s shown that the oxidation behavior of pure nickel is dominated by the outward diffusion of internal cations via the platinum marker experiment. The oxide layer of Ni-20Cr is a dense single-phase oxide with a structure of rhombohedral-Cr2O3. Inconel 740H has a multi-layer structure at the same experiment condition. The external oxide layer is composed of rutile-TiO2, spinel-MnCr2O4 and rhombohedral- Cr2O3.At the same time, the internal oxide region includes the precipitates of α-Al2O3 and rutile-TiO2. Furthermore, a tube furnace was used to carry high-temperature experiment at 750 and 900 °C for 24 hours with humid air atmosphere. The volatilization of the oxide layer would be caused by the addition of water vapor, and the original mass gain behavior was transformed into a mass loss behavior. The oxidation rate of Inconel 740H shows little difference between being set in the dry air or moisture air atmosphere. However, at 900°C, the oxidation rate increases due to the addition of water vapor. Hope this study will be helpful for understanding the early oxidation mechanism and behavior of Inconel 740H in dry and wet air atmosphere. It is expected that it can provide important parameters for the future application or improvement of Inconel 740H.

    致謝-----------------------------------i 摘要---------------------------------iii Abstract-----------------------------iv 目錄----------------------------------vi 表目錄--------------------------------ix 圖目錄---------------------------------x 第一章 介紹---------------------------1 第二章 文獻回顧 -----------------------2 2.1 先進超超臨界燃煤發電系統---------2 2.2 第四代核能系統------------------2 2.3 鎳基合金------------------------3 2.3.1 鎳-------------------------------3 2.3.2鎳鉻合金---------------------------3 2.3.3 γ'析出硬化型超合金-----------------4 2.3.4 Inconel 740H----------------------4 2.4 高溫氧化-------------------------4 2.4.1 金屬的氧化-------------------------4 2.4.2 基合金上氧化物形成的熱力學和穩定性----5 2.4.3 金屬之氧化動力學--------------------6 2.4.4 Inconel 740H的氧化行為--------------7 2.4.5金屬於含有水氣的高溫環境下之氧化行為----7 第三章 實驗方法-------------------------10 3.1 樣品準備-----------------------------10 3.2 高溫氧化實驗-------------------------11 3.2.1 TGA乾空氣氛圍高溫實驗---------------11 3.2.2 高溫管狀爐乾、濕空氣氛圍高溫實驗------11 3.3 X光繞射分析---------------------------14 3.4 橫截面之微結構與成分分析---------------14 3.5 純鎳白金標定實驗----------------------15 第四章 實驗結果--------------------------16 4.1 乾空氣中之氧化動力學-------------------16 4.1.1 純鎳、Ni-20Cr與Inconel 740H之氧化動力學--16 4.1.2 純鎳白金標定實驗---------------------20 4.2 Ni、Ni-20Cr與Inconel 740H氧化前後表面結構分析-24 4.2.1 純鎳氧化前後之晶體結構----------------24 4.2.2 Ni-20Cr氧化前後之晶體結構-------------27 4.2.3 Inconel 740H氧化前後之晶體結構--------29 4.2.4 純鎳、Ni-20Cr與Inconel 740H氧化後之表面形貌-34 4.2.5純鎳、Ni-20Cr與Inconel 740 H氧化後橫截面觀察與縱深成分分析-38 4.2.5.1 橫截面觀察--------------------------38 4.2.5.2 EDS縱深化學成分分析------------------42 4.2.5.3 AES縱深化學成分分析------------------49 4.3 濕空氣氛圍高溫實驗------------------------51 4.3.1 純鎳、Ni-20Cr與Inconel 740H質量變化結果--51 4.3.2 純鎳、Ni-20Cr與Inconel 740H之表面形貌---53 第五章 討論---------------------------------56 5.1 外氧化層生長與比較-------------------------56 5.2 內氧化析出物------------------------------59 5.3 TGA增重分析與氧化動力學--------------------61 5.4 水氣對於氧化行為之影響---------------------73 第六章 結論----------------------------------75 參考文獻---------------------------------------77 附錄A Ni-20Cr與Inconel 740H在900°C下進行1440小時高溫氧化--79 附錄B EDS分析中Pt與Nb元素之特徵光譜能量重疊性----80 附錄C XRD分析結果正規化------------------------82

    [1] 台灣電力股份有限公司, (n.d.). https://www.taipower.com.tw/tc/chart_m/a01_電力供需資訊_電源開發規劃_歷年發購電量及結構.html (accessed August4, 2021).
    [2] World Meteorological Organisation, State of the Global Climate 2020, 2021.
    [3] P. D. Jablonski, J. A. Hawk, C. J. Cowen, P. J. Maziasz, Processing of advanced cast alloys for A-USC steam turbine applications, JOM, vol. 64, no. 2 (2012) 271–279.
    [4] R. Viswanathan, J. Sarver, J. M. Tanzosh, Boiler materials for ultra-supercritical coal power plants - Steamside oxidation, Journal of Materials Engineering and Performance, vol. 15, no. 3 (2006) 255–274.
    [5] Y. Cao, X. Wei, J. Wu, B. Wang, Y. Li, Development of ultra-supercritical power plant in China, Challenges of Power Engineering and Environment (2007) 231–236.
    [6] R. Viswanathan et al., U.S. Program on materials technology for ultra-supercritical coal power plants, Journal of Materials Engineering and Performance, vol. 22, no. 10 (2013) 2904–2915.
    [7] J. Shingledecker, D. Gandy, Advances in Materials Technology for Fossil Power Plants - Proceedings from the 7th International Conference: Preface, Advances in Materials Technology for Fossil Power Plants - Proceedings from the 7th International Conference. ASM International (2014).
    [8] M. A. and othersKamide, Hideki and Rodriguez, Gilles and Guiberteau, Philippe and Kawasaki, Nobuchika and Hatala, Branislav and Alemberti, Alessandro and Bourg, Stephane and Huang, Yanping and Serre, Frederic and Fuetterer, Generation IV International Forum-GIF, Annual Report 2020, (2021).
    [9] Nuclear Energy Agency [NEA], Technology Roadmap Update for Generation IV Nuclear Energy Systems, Gen IV Int. Forum. (2014) 1–66.
    [10] D. Chapin, S. Kiffer, J. Nestell, The Very High Temperature Reactor: A Technical Summary. (2004) 289–304.
    [11] K. R. Schultz, L. C. Brown, G. E. Berenbruch, C. J. Hamilton, Large-scale production of hydrogen by nuclear energy for the hydrogen economy, National Hydrogen Association Annual Conference, no. February (2003).
    [12] G. R. Thellaputta, P. S. Chandra, C. S. P. Rao, Machinability of Nickel Based Superalloys: A Review, Materials Today: Proceedings, vol. 4, no. 2 (2017) 3712–3721.
    [13] C. S. Giggins, F. S. Pettit, Oxidation of Ni-Cr-Al Alloys Between 1000° and 1200°C, Journal of The Electrochemical Society, vol. 118, no. 11 (1971) 1782.
    [14] L. Liu, J. Zhang, C. Ai, Nickel-Based Superalloys, Encyclopedia of Materials: Metals and Alloys (2021) 294–304.
    [15] A. Galerie, High temperature corrosion of chromia-forming iron, nickel and cobalt-base alloys, Shreir's Corrosion, vol. 304 (2010) 583–605.
    [16] E. J. Opila, High Temperature Corrosion and Materials Chemistry III, The Electrochemical Society (2003).
    [17] B. S. Murty, J. W. Yeh, S.Ranganathan, P. P. Bhattacharjee, High-entropy alloys, Elsevier (2019).
    [18] M. J. Donachie, S. J. Donachie, Superalloys: a technical guide, ASM international (2002).
    [19] R. C. Reed, The superalloys: fundamentals and applications, Cambridge university press (2008).
    [20] PCC Energy Group, Inconel Alloy 740H: A Superalloy Specifically Designed for Advanced Ultra Supercritical Power Generation (2014) 1–24.
    [21] J. J. deBarbadillo, INCONEL alloy 740H, Elsevier, vol. 740 (2017).
    [22] J. Shingledecker, H. Hendrix, J. Phillips, J. Siefert, R. Purgert, P. Rawls, US program on advanced ultrasupercritical power plant materials–the economy of using advanced alloys (2012).
    [23] J. P. Shingledecker, N. D. Evans, G. M. Pharr, Influences of composition and grain size on creep-rupture behavior of Inconel® alloy 740, Materials Science and Engineering: A, vol. 578 (2013) 277–286.
    [24] D. J. Young, High temperature oxidation and corrosion of metals, Elsevier, vol. 1 (2008).
    [25] C. Wagner, Beitrag zur Theorie des Anlaufvorgangs, Zeitschrift für Phys. Angewandte Chemie, vol. 21B, no. 1 (1933) 25–41.
    [26] C. B. Alcock, Thermochemical processes: principles and models, Elsevier (2000).
    [27] D. R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC press (2017).
    [28] P. Nestor, 10-High Temperature Corossion, Electrochemistry and Corrosion Science (2004).
    [29] H. Jiang, J. Dong, M. Zhang, L. Zheng, Z. Yao, Oxidation Behavior and Mechanism of Inconel 740H Alloy for Advanced Ultra-supercritical Power Plants Between 1050 and 1170 °C, Oxidation of Metals, vol. 84, no. 1–2 (2015) 61–72.
    [30] S. R. J. Saunders, M. Monteiro, F. Rizzo, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review, Progress in Materials Science, vol. 53, no. 5 (2008) 775–837.
    [31] A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J.P. Petit, L. Antoni, Mechanisms of chromia scale failure during the course of 15-18Cr ferritic stainless steel oxidation in water vapour, Materials at High Temperatures, vol. 22, no. 1–2 (2005) 105–112.
    [32] N. Hussain, K. A. Shahid, I. H. Khan, S. Rahman, Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air. II, Oxidation of Metals, vol. 43, no. 3–4 (1995) 363–378.
    [33] B. Kościelniak, B. Chmiela, M. Sozańska, R. Swadźba, M. Drajewicz, Oxidation behavior of inconel 740h nickel superalloy in steam atmosphere at 750◦ C, Materials (Basel)., vol. 14, no. 16 (2021).
    [34] N. Hussain, A. H. Qureshi, K. A. Shahid, N. A. Chughtai, F. A. Khalid, High-temperature oxidation behavior of HASTELLOY C-4 in steam, Oxidation of Metals, vol. 61, no. 5–6 (2004) 355–364.
    [35] C. Zhou, J. Yu, S. Gong, H. Xu, Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature, Surface and Coatings Technology, vol. 161, no. 1 (2002) 86–91.
    [36] C. T. Sims, N. S. Stoloff, W. C. Hagel, Superalloys II, vol. 8 (1987).
    [37] M. Hasegawa, Ellingham Diagram, Elsevier Ltd, vol. 1 (2013).
    [38] R. Haugsrud, On the high-temperature oxidation of nickel, Corrosion Science, vol. 45, no. 1 (2003) 211–235.
    [39] H. V. Atkinson, A review of the role of short-circuit diffusion in the oxidation of nickel, chromium, and nickel-chromium alloys, Oxidation of Metals, vol. 24, no. 3–4 (1985) 177–197.
    [40] B. Cho, S. Moon, S. Chung, K. Kim, T. Kang, B. Koo, Characterization of the diffusion properties of chromium in stainless-steel oxides by photoemission spectroscopy, Journal of Vacuum Science & Technology A, vol. 19, no. 3 (2001) 998–1003.
    [41] R. E. Reed-Hill, R. Abbaschian, R. Abbaschian, Physical Metallurgy Principles, vol. 17, (1973).
    [42] I. Barin, G. Platzki, Thermochemical data of pure substances, Wiley-VCH, vol. 304. no. 334 (1997).
    [43] K. T. Jacob, A. Kumar, Y. Waseda, Gibbs energy of formation of MnO: Measurement and assessment, Journal of Phase Equilibria and Diffusion, vol. 29, no. 3 (2008) 222–230.
    [1] 台灣電力股份有限公司, (n.d.). https://www.taipower.com.tw/tc/chart_m/a01_電力供需資訊_電源開發規劃_歷年發購電量及結構.html (accessed August4, 2021).
    [2] World Meteorological Organisation, State of the Global Climate 2020, 2021.
    [3] P. D. Jablonski, J. A. Hawk, C. J. Cowen, P. J. Maziasz, Processing of advanced cast alloys for A-USC steam turbine applications, JOM, vol. 64, no. 2 (2012) 271–279.
    [4] R. Viswanathan, J. Sarver, J. M. Tanzosh, Boiler materials for ultra-supercritical coal power plants - Steamside oxidation, Journal of Materials Engineering and Performance, vol. 15, no. 3 (2006) 255–274.
    [5] Y. Cao, X. Wei, J. Wu, B. Wang, Y. Li, Development of ultra-supercritical power plant in China, Challenges of Power Engineering and Environment (2007) 231–236.
    [6] R. Viswanathan et al., U.S. Program on materials technology for ultra-supercritical coal power plants, Journal of Materials Engineering and Performance, vol. 22, no. 10 (2013) 2904–2915.
    [7] J. Shingledecker, D. Gandy, Advances in Materials Technology for Fossil Power Plants - Proceedings from the 7th International Conference: Preface, Advances in Materials Technology for Fossil Power Plants - Proceedings from the 7th International Conference. ASM International (2014).
    [8] M. A. and othersKamide, Hideki and Rodriguez, Gilles and Guiberteau, Philippe and Kawasaki, Nobuchika and Hatala, Branislav and Alemberti, Alessandro and Bourg, Stephane and Huang, Yanping and Serre, Frederic and Fuetterer, Generation IV International Forum-GIF, Annual Report 2020, (2021).
    [9] Nuclear Energy Agency [NEA], Technology Roadmap Update for Generation IV Nuclear Energy Systems, Gen IV Int. Forum. (2014) 1–66.
    [10] D. Chapin, S. Kiffer, J. Nestell, The Very High Temperature Reactor: A Technical Summary. (2004) 289–304.
    [11] K. R. Schultz, L. C. Brown, G. E. Berenbruch, C. J. Hamilton, Large-scale production of hydrogen by nuclear energy for the hydrogen economy, National Hydrogen Association Annual Conference, no. February (2003).
    [12] G. R. Thellaputta, P. S. Chandra, C. S. P. Rao, Machinability of Nickel Based Superalloys: A Review, Materials Today: Proceedings, vol. 4, no. 2 (2017) 3712–3721.
    [13] C. S. Giggins, F. S. Pettit, Oxidation of Ni-Cr-Al Alloys Between 1000° and 1200°C, Journal of The Electrochemical Society, vol. 118, no. 11 (1971) 1782.
    [14] L. Liu, J. Zhang, C. Ai, Nickel-Based Superalloys, Encyclopedia of Materials: Metals and Alloys (2021) 294–304.
    [15] A. Galerie, High temperature corrosion of chromia-forming iron, nickel and cobalt-base alloys, Shreir's Corrosion, vol. 304 (2010) 583–605.
    [16] E. J. Opila, High Temperature Corrosion and Materials Chemistry III, The Electrochemical Society (2003).
    [17] B. S. Murty, J. W. Yeh, S.Ranganathan, P. P. Bhattacharjee, High-entropy alloys, Elsevier (2019).
    [18] M. J. Donachie, S. J. Donachie, Superalloys: a technical guide, ASM international (2002).
    [19] R. C. Reed, The superalloys: fundamentals and applications, Cambridge university press (2008).
    [20] PCC Energy Group, Inconel Alloy 740H: A Superalloy Specifically Designed for Advanced Ultra Supercritical Power Generation (2014) 1–24.
    [21] J. J. deBarbadillo, INCONEL alloy 740H, Elsevier, vol. 740 (2017).
    [22] J. Shingledecker, H. Hendrix, J. Phillips, J. Siefert, R. Purgert, P. Rawls, US program on advanced ultrasupercritical power plant materials–the economy of using advanced alloys (2012).
    [23] J. P. Shingledecker, N. D. Evans, G. M. Pharr, Influences of composition and grain size on creep-rupture behavior of Inconel® alloy 740, Materials Science and Engineering: A, vol. 578 (2013) 277–286.
    [24] D. J. Young, High temperature oxidation and corrosion of metals, Elsevier, vol. 1 (2008).
    [25] C. Wagner, Beitrag zur Theorie des Anlaufvorgangs, Zeitschrift für Phys. Angewandte Chemie, vol. 21B, no. 1 (1933) 25–41.
    [26] C. B. Alcock, Thermochemical processes: principles and models, Elsevier (2000).
    [27] D. R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC press (2017).
    [28] P. Nestor, 10-High Temperature Corossion, Electrochemistry and Corrosion Science (2004).
    [29] H. Jiang, J. Dong, M. Zhang, L. Zheng, Z. Yao, Oxidation Behavior and Mechanism of Inconel 740H Alloy for Advanced Ultra-supercritical Power Plants Between 1050 and 1170 °C, Oxidation of Metals, vol. 84, no. 1–2 (2015) 61–72.
    [30] S. R. J. Saunders, M. Monteiro, F. Rizzo, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review, Progress in Materials Science, vol. 53, no. 5 (2008) 775–837.
    [31] A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J.P. Petit, L. Antoni, Mechanisms of chromia scale failure during the course of 15-18Cr ferritic stainless steel oxidation in water vapour, Materials at High Temperatures, vol. 22, no. 1–2 (2005) 105–112.
    [32] N. Hussain, K. A. Shahid, I. H. Khan, S. Rahman, Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air. II, Oxidation of Metals, vol. 43, no. 3–4 (1995) 363–378.
    [33] B. Kościelniak, B. Chmiela, M. Sozańska, R. Swadźba, M. Drajewicz, Oxidation behavior of inconel 740h nickel superalloy in steam atmosphere at 750◦ C, Materials (Basel)., vol. 14, no. 16 (2021).
    [34] N. Hussain, A. H. Qureshi, K. A. Shahid, N. A. Chughtai, F. A. Khalid, High-temperature oxidation behavior of HASTELLOY C-4 in steam, Oxidation of Metals, vol. 61, no. 5–6 (2004) 355–364.
    [35] C. Zhou, J. Yu, S. Gong, H. Xu, Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature, Surface and Coatings Technology, vol. 161, no. 1 (2002) 86–91.
    [36] C. T. Sims, N. S. Stoloff, W. C. Hagel, Superalloys II, vol. 8 (1987).
    [37] M. Hasegawa, Ellingham Diagram, Elsevier Ltd, vol. 1 (2013).
    [38] R. Haugsrud, On the high-temperature oxidation of nickel, Corrosion Science, vol. 45, no. 1 (2003) 211–235.
    [39] H. V. Atkinson, A review of the role of short-circuit diffusion in the oxidation of nickel, chromium, and nickel-chromium alloys, Oxidation of Metals, vol. 24, no. 3–4 (1985) 177–197.
    [40] B. Cho, S. Moon, S. Chung, K. Kim, T. Kang, B. Koo, Characterization of the diffusion properties of chromium in stainless-steel oxides by photoemission spectroscopy, Journal of Vacuum Science & Technology A, vol. 19, no. 3 (2001) 998–1003.
    [41] R. E. Reed-Hill, R. Abbaschian, R. Abbaschian, Physical Metallurgy Principles, vol. 17, (1973).
    [42] I. Barin, G. Platzki, Thermochemical data of pure substances, Wiley-VCH, vol. 304. no. 334 (1997).
    [43] K. T. Jacob, A. Kumar, Y. Waseda, Gibbs energy of formation of MnO: Measurement and assessment, Journal of Phase Equilibria and Diffusion, vol. 29, no. 3 (2008) 222–230.
    [44] K. T. Jacob, G. Rajitha, Role of entropy in the stability of cobalt titanates, Journal of Chemical Thermodynamics, vol. 42, no. 7 (2010) 879–885.
    [45] N. Koc, M. Timucin, Activity-composition relations in MnCr2O4, CoCr2O4, solid solutions and stabilities of MnCr2O4 and CoCr2O4 at 1300°C, Journal of the American Ceramic Society, vol. 88, no. 9 (2005) 2578–2585.
    [46] R. E. Lobnig, H. P. Schmidt, K. Hennesen, H. J .Grabke, Diffusion of cations in chromia layers grown on iron-base alloys, Oxidation of Metals, vol. 37, no. 1–2 (1992) 81–93.
    [47] T. L. Chen, Oxidation Kinetics and Residual Stress of Scales of a Ni-based Superalloy Haynes 282 in Dry Air at 800-950°C, ESS, NTHU (2021).
    [48] R. A. RAPP, Kinetics, microstructures and mechanism of internal oxidation-its effect and prevention in high temperature alloy oxidation, Corrosion, vol. 21, no. 12 (1965) 382–401.
    [49] W. Zhao, Steam effects on oxidation behavior of alumina-scale forming nickel-based alloys and a kinetics analysis of complex scale evolution during isothermal oxidation., Diss. University of Pittsburgh (2012) 37-39.
    [50]A. C. S. Sabioni, A. M. Huntz, F. Millot, C. Monty, Self-diffusion in Cr2O3 III. Chromium and oxygen grain-boundary diffusion in polycrystals, Philosophical magazine. A, Physics of condensed matter, defects and mechanical properties, vol. 66, no. 3 (1992) 361–374.
    [51] F. A. Kröger, H. J. Vink, Relations between the Concentrations of Imperfections in Crystalline Solids, Solid State Physics, vol. 3, no. C (1956) 307–435.
    [52] H. Graham, H. Davis, Oxidation / Vaporization Kinetics o f Cr2O3, Journal of the American Ceramic Society, vol. 1970, no. 48 (1973) 89–93.
    [53] B. Pieraggi, Calculations of parabolic reaction rate constants, Oxidation of Metals, vol. 27, no. 3–4 (1987) 177–185.
    [54] A. Rahmel, Einfluss von wasserdampf und kohlendioxyd auf die oxydation von nickel in sauerstoff bei hohen temperaturen, Corrosion Science, vol. 5, no. 12 (1965) 815–820.
    [55] T. K. Yeh, H. P. Chang, M. Y. Wang, T. Yuan, J. J. Kai, Corrosion of Alloy 617 in high-temperature gas environments, Nuclear Engineering and Design, vol. 271 (2014).
    [56] Y. P. Jacob, V. A. C. Haanappel, M. F. Stroosnijder, H. Buscail, P. Fielitz, G. Borchardt, The effect of gas composition on the isothermal oxidation behaviour of PM chromium, Corrosion Scienc., vol. 44, no. 9 (2002) 2027–2039.

    QR CODE