簡易檢索 / 詳目顯示

研究生: 鄂雅鈴
E, Ya-Ling
論文名稱: 以碳化矽多層次填充散熱膏之研發
The Research and Development of Thermal Grease by Using Multi-size Silicon Carbide as the Filler
指導教授: 林唯耕
Lin, Wei-Keng
口試委員: 蔡尤溪
Chuah, Yew-Khoy
林鴻文
Lin, Hong-Wen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 84
中文關鍵詞: 熱介面材料熱傳導係數導熱膏碳化矽
外文關鍵詞: thermal interface material, thermal conductivity, thermal grease, silicon carbide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代電子產品追求效率與縮小化的時代,提升電子構裝散熱效率成為重要的課題。增加散熱效率的其中一個方法是降低發熱源與散熱模組間的表面接觸熱阻,需要使用熱介面材料(Thermal Interface Material, T.I.M.)來填補介面中粗糙表面所產生的空隙,以達到熱傳提升的效果。其中熱介面材料依型態可分為散熱膏、散熱片及散熱膠等。本論文主要為研究出高導熱且低成本的散熱膏,並以實驗方法去討論-使用不同大小碳化矽粉添加於矽油中來製成的熱介面材料,探討其對熱傳導係數所造成之影響。其中實驗分為四大部分:第一部分為T.I.M.量測平台的穩定性分析,第二部分為碳化矽製成散熱膏之研發,第三部分為碳化矽製成之散熱膏導熱測試,第四部分為將碳化矽進行改質製成散熱膏之導熱測試。
    在量測前,Thermal Grease用具有穩定性的道康寧TC-5121及信越SE-7762進行校正,誤差在7%以及6%以下。而K metal部分用純銅塊進行校正後誤差也在10%以下。可知本測量平台具有良好的準確性和穩定性。實驗結果中,使用單一粒徑50μm之碳化矽粉末製成散熱膏之導熱測試結果為1.754 (W/m·℃),用不同大小粒徑碳化矽粉末之導熱測試結果為2.153 (W/m·℃)。使用改質後粒徑為34μm之碳化矽粉末製成散熱膏之導熱測試結果為3.257 (W/m·℃)。由實驗結果可以發現,利用材料堆疊的方式,能有效提升熱介面材料的導熱值;利用球磨機改質碳化矽,搭配特定比例的碳化矽及矽油、轉速和球磨時間,使碳化矽更有利於使用在散熱膏上並提升其導熱特性。


    To enhance efficiency of heat transfer, fill the gap interface and reduce the thermal resistance between Cooler and CPU surface, the Thermal Interface Material (TIM) was made. The main purpose of this paper was to discuss the experimental methods conducted with using different size of silicon carbide powder to fill the thermal grease, the effect of thermal conductivity caused be the method was also evaluated in this paper. There are four main topic in this study: the first part was the stability analysis on T.I.M measuring system. The second one was research and development silicon carbide powder to fill of the thermal grease. The third one was testing thermal conductivity of silicon carbide powder to fill of the thermal grease. The last part was modification material of silicon carbide, filling of the thermal grease and testing thermal conductivity.
    Before experiment, accuracy of T.I.M measurement thermal grease part was less than 7% and 6% by using the Dow Corning TC-5121 and SE-7762, and accuracy of T.I.M measurement K metal part was within 10% by using pure copper. It was proved that there were good accuracy and stability in T.I.M measurement equipment. Experiment results showed that the test of thermal grease with only one size of 50μm SiC powder, the thermal conductivity is 1.754 (W/m·℃). Thermal grease mixed with three different sizes of SiC powder, the thermal conductivity is 2.153(W/m·℃). The thermal conductivity of thermal grease with 34μm SiC powder had modified could reach 3.257 (W/m·℃).

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 ix 第一章 緒論 1 1-1 前言 1 1-2 研究動機及目的 3 1-3 文獻回顧 4 第二章 理論模式與實驗依據 10 2-1 材料的熱力性質 10 2-2 ASTM D5470理論分析 12 2-2.1 金屬材料熱傳導係數理論分析 14 2-2.2 Thermal Pad 熱傳導係數理論分析 16 2-2.3 Thermal Grease 熱傳導係數理論分析 18 第三章 實驗設備及方法 20 3-1 實驗設備及實驗材料 20 3-1.1 實驗前儀器校正 20 3-1.2 電源供應器及訊號接收 24 3-1.3 可程式邏輯控制器 (Programmable Logic Controller) 27 3-1.4 冷卻系統 28 3-1.5 Spacer製作設計 29 3-1.6 T.I.M.量測平台整合主體架構 30 3-1.7 Dummy Heater熱阻測試機 32 3-1.8 Three-roll Mill (三滾筒混練機) 33 3-1.9 真空幫浦 33 3-1.10 球磨機 34 3-1.11 實驗材料 34 3-2 實驗儀器校正及實驗步驟 39 3-2.1 實驗前儀器校正 39 3-2.2 熱介面材料之熱傳導係數量測操作流程 40 3-2.3 T.I.M.量測系統操做注意事項 43 3-2.4 熱介面材料之熱阻值量測操作流程 43 3-3 Thermal Grease製作過程 45 3-4 碳化矽材料改質方法及過程 48 第四章 結果與討論 49 4-1 散熱膏量測系統穩定性分析結果與討論 50 4-1.1 美國道康寧TC-5121 (Kref=2.5 W/m·℃) 52 4-1.2 日本信越SE-7762 (Kref=4.0 W/m·℃) 55 4-1.3 TC-5121、SE-7762穩定性分析誤差結果與討論 58 4-2 Thermal Grease之研發 60 4-2.1 碳化矽粉搭配矽油之實驗結果與討論 60 4-2.2 碳化矽及氧化鋁粉末搭配矽油之實驗結果與討論 66 4-2.3 改質碳化矽粉末搭配矽油之實驗結果與討論 72 第五章 結論 80 參考文獻 82 附錄A 熱介面材料編號說明 84

    [1] Ravi Prasher, “Thermal interface materials: Historical Perspective, Status, and Future Directions”, Proceedings of the IEEE, 2006.
    [2] Ashay Dani,James C, Jr. Matayabas, Paul Koning, Thermal interface material technology advancements and challenges - An overview, Intel Corporation Assembly Technology Development 5000, W.Chandler Blvd Chandler, AZ 85226.
    [3] 許毅帆,「熱介面材料(T.I.M.)測量平台之不准度分析」,國立清華大學工程與系統科學研究所,碩士論文,2007。
    [4] Yunsheng Xu, Xiangcheng Luo, D.D.L. Chung, “Sodium Silicate Based Thermal Interface Material for High Thermal Contact Conductance”, Journal of Electronic Packaging, 2000.
    [5] 劉世量,「提升氮化鋁 /環氧樹脂複合材料導熱性質之研究」,國立成功大學化工程研究所,碩士論文,2003。
    [6] 鐘昌宏,「高K值之熱界面材料研發」,國立清華大學工程與系統科學研究所,碩士論文,2009。
    [7] 葉祐坤,「散熱片傳性質及黏之研究 」,國立台北科技大學製造研究所,碩士論文,2011。
    [8] 林昱聖,「以氮化物填充熱介面材料之研發」,國立清華大學工程與系統科學研究所,碩士論文,2011。
    [9] 趙少君,「以氮化物為填充物之高熱傳熱介面材料之研發」,國立清華大學工程與系統科學研究所,碩士論文,2013。
    [10] 郭雅芬,「以氮化鋁為填充物之高熱傳導熱片之研發」,國立清華大學工程與系統科學研究所,碩士論文,2014。
    [11] 楊于萱,「以氮化鋁多層次填充散熱膠之研發」,國立清華大學工程與系統科學研究所,碩士論文,2015。
    [12] ASTM D5470-01, “Standard Test Methods for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials”, American Society for Testing and Materials, West Conshohocken, PA.
    [13] ASTM E1225-99, “Standard Test Method for Thermal Conductivity of Solid by Means of Guarded-Comparative-Longitudinal Heat Flow Technique”, West Conshohocken, PA.
    [14] ASTM C177-97, “Standard Test Method for Steady-State Heat Flux Measurement and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus”, West Conshohocken, PA.
    [15] ASTM D374-99, “Standard Test Methods for Thickness of Solid Electrical Insulation Materials, American Society for Testing and Materials”, West Conshohocken, PA.
    [16] Wei-Keng Lin, Zhen-Dong Huang, Xu-Shan Zhu, “Standard Testing Method for the Performance of Vapor Chamber”, 2015.
    [17] Chien-Yuh Yang, Chien-Fu Liu, “Experimental Thermal and Fluid Science”, vol. 47, 2013, pp. 40–47

    QR CODE