簡易檢索 / 詳目顯示

研究生: 楊宜達
I Da Yang
論文名稱: 微熱氣泡成長過程及其微流場之觀測
The Flow Visualization of Micro Thermal Bubble Growth Process and Induced Flow Field
指導教授: 錢景常
Ching Chang Chieng
曾繁根
Fan Gang Tseng
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 154
中文關鍵詞: 爆炸式微熱氣泡氣泡交互作用微質點影像測速儀噴墨系統
外文關鍵詞: explosive micro thermal bubble, bubble interactions, micro PIV, inkjet system
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之主旨在於以實驗方式詳細探討微尺度之單一及雙爆炸式熱氣泡之成核溫度與成核機制、氣泡成長與縮小過程中外觀尺寸之定性及定量觀測、氣泡成長週期中周圍速度場之量測並與數值模擬結果相比較,以期對微尺度爆炸式熱氣泡成長過程之物理現象有更深入的瞭解。依據微尺度爆炸式熱氣泡之特性,本研究應用了高速、非侵入式之微流場觀測方法,如:整合平均相位法之高速攝影技術、微質點影像測速儀與內含顏色時間碼之微質點追跡儀等,完整觀測微氣泡於成長週期之外觀及周圍流場之變化,更延伸應用於H型微快速混合器之流場觀測。於單一微熱氣泡實驗中,微加熱器之尺寸各為30x30um2, 30x60um2, 與 20x60um2,各操作於熱通率1.2, 1.4, and 1.6 GW/m2下,其加熱脈衝長度為4us;於雙微熱氣泡之實驗中,雙微加熱器之尺寸均為30x60um2,相距25 至125um,各操作於熱通率1.61至2.14GW/m2 間,並調整加熱脈衝長度使總輸入能量相同。氣泡成長過程之外觀與周圍速度場之實驗與模擬結果相當一致。當兩微加熱器之間距越近,壓力場之變化對氣泡外觀、成長速度、推力等影響越明顯。應用微熱氣泡間之相互影響,可以改變氣泡成長曲線,用以減少衛星液滴,提升微液滴噴射之品質。


    Bubble dynamics including the growth and collapse process of explosive micro thermal single and dual bubbles are investigated experimentally and are compared with simulation results in details. For the characteristic of high speed and micro scale in micro explosive bubbles growth process, there are non-intrusive flow visualization techniques are demonstrated and developed in the study. The high speed photography and micro PIV coupling with the phase averaged techniques are applied for the sequential bubble growth/collapse process and induced flow fields respectively. For the interesting of micro flow visualization techniques, the micro PTV with embedded color time code is developed and successfully applied in the flow field visualization of H-type rapid micro mixer. The single heater with size in 30x30um2, 30x60um2, and 20x60um2 is applied 4us heat pulse with heat fluxes of 1.2, 1.4, and 1.6 GW/m2 separately for undergone the nucleate boiling. Dual bubbles are generated on two microheaters of heating areas of 30umx60um each with supplied heat flux of 1.61 to 2.14 GW/m2 and the heaters are separated by different distances ranging from 25 to 125um. Excellent agreements on the bubble shape variations and the induced flowfields from measurements and computations are achieved in details and the strong bubble-bubble interactions are illustrated in terms of bubble appearance, flowfields and pressure fields as the heaters are getting closer. Droplet ejected by dual bubbles in an animated inkjet system is demonstrated with droplet quality of no satellites.

    Index Abstract (Chinese) I Abstract II Index IV Table List VII Figure List VIII Chapter 1 Introduction 1.1. Micro Thermal Bubble Actuator in MEMS 1 1.1.1. The Operating Process of Thermal Bubble Inkjet Print Head 1 1.2. The Issues for Micro Heater Design 2 1.2.1. The Effect of Geometric Design of Micro Heater 2 1.2.2. The Effect of Number of Micro Heaters 5 1.2.2.1. The Interactions between Bubbles 5 1.2.3. Bubble Induced Flow Fields 9 1.3. The Overview of this Thesis 9 1.3.1. Single Micro Thermal Bubble 10 1.3.2. Dual Micro Thermal Bubbles 11 Chapter 2 Boiling Mechanism of Micro Bubble 2.1 Temperature Measurement 13 2.1.1 The Surface Temperature Distribution 13 2.1.2 The Measurements of Average Boiling Temperature 15 2.2 The Nucleation Mechanism 16 CHAPTER 3 Designing and Fabrication of Micro Heater 3.1 Micro Heater with Different Aspect Ratios 20 3.1.1 The Manufacturing Process 22 3.2 Bubble Generated by Heating Pulses with High Heat Fluxes 22 3.3 Micro Dual Heaters with Different Separation Distance 25 3.3.1 The Manufacturing Process 26 3.4 Bubble Generated by Heating Pulses with High Heat Fluxes 27 CHAPTER 4 Flow Visualization of Bubble Growth Process 4.1 Flow Visualization in Micro Fluidic System 29 4.1.1 The Issues in Microscale Flow Visualization 30 4.2 Flow Visualization System Setup for High Speed Images-Single Bubble 34 4.2.1 Phase average method 35 4.3 Quantitative Flow Visualization -Micro Particle Image Velocimetry (μPIV) 37 4.3.1 The experiment setup of Micro Particle Image Velocimetry 38 4.3.1.1 Overview of the System 38 4.3.1.2 Particle Imaging 40 4.3.2 Spatial Resolution Estimation in Micro PIV 41 4.4 Apply Micro Particle Image Velocimetry in Micro Thermal Bubbles Induced Flow Field 42 4.5 Micro Particle Tracing Velocimetry (□PTV) with Embedded Color Time Code 47 4.5.1 Selection of Particles 50 4.5.2 Optical System Setup 50 4.5.3 Results and Discussion of the Flow Field of H-Mixer 53 4.6 Computational Fluidic Dynamic (CFD) 54 Chapter 5 Single Bubble Growth Process 5.1 Histories of Bubble Growth Process 55 5.2 Side View of Bubble Images 68 5.2.1 The Dynamic Contact Angle Variation during Bubble Growth Process 68 5.3 The Rebound Phenomena 74 5.4 Growth Rates of Bubble Dimensions in Three Axes of Heaters 76 5.4.1 Heater Shape Effect 76 5.4.2 Heat Flux Effect 78 5.5 Bubble growth/collapse process in terms of bubble volume 83 5.6 The Bubble Size Predicted by Asai’s Model 88 5.7 Heat transfer efficiency 91 5.8 Conclusions of Single Bubble Growth/Collapse 92 Chapter 6 Single Bubble Induced Flow Field 6.1 Measured and Computed Bubble Size Histories 94 6.2 Computed and Measured Induced Flowfields by Bubble Growth/Collapse 97 6.3 Conclusions of Single Bubble Induced Flow Fields 103 Chapter 7 Bubble-Bubble Interactions 7.1 Histories of Bubble Configuration Changes During Growth/Collapse Processes 104 7.2 The Rebound Phenomena 110 7.3 Extensions of Bubble in X-, Y-and Z-Directions 112 7.4 Bubble growth/collapse process in terms of bubble volume 119 7.5 Conclusions 122 Chapter 8 Dual Bubble Induced Flow Fields 8.1 Histories of Bubble Configuration Changes during the Bubble Lifetime 123 8.2 Induced Flowfields around Dual Bubbles (Top View) 126 8.3 Pressure Fields around Dual Bubbles 136 8.4 Secondary Flow Induced by Dual Bubbles (Side View) 140 8.5 Application of Dual-Bubble Actuating Inkjet System 144 8.6 Conclusions 149 Reference 150

    References

    [1] S. I. Zoltan et al, Pulse Droplet Ejecting System, US patent 3,683,212, 1972.
    [2] J. L. Vaught et al, Thermal Ink Jet Printer, US Patent 4,490,728, 1984.
    [3] A. Asai, R. Hara, and I. Endo, One dimensional model of bubble growth and liquid flow in bubble jet printers, Japanese Journal of Applied Physics Vol. 26 pp.1794-1801, 1987.
    [4] Z. Zhao, S. Glod, and D. Poulikakos, Pressure and Power Generation During Explosive Vaporization on A Thin-film Microheater, International Journal of Heat and Mass Transfer, vol.43, pp. 281-296, 2000.
    [5] J. H. Lim, Y. S. Lee, H. T. Lim, S. S. Baek, K. Kuk, and Y. S. Oh, Visualization of Bubble Generated by micro Heaters with Various Current Density Distribution, Proc. of the 16th IEEE MEMS, Jan 19-23, Kyoto, Japan, pp.197-200, 2003.
    [6] A. Asai, S. Hirasawa, and I. Endo, Bubble Generation Mechanism in the Bubble Jet Recording Process, Journal of Imaging Technology, vol.14, no.5, pp120-124, 1988.
    [7] A. Asai, Application of the Nucleation Theory to the Design of Bubble Jet Printers, Japanese Journal of Applied Physics, vol.28, no.5, pp909-915, 1989.
    [8] A. Asai, Bubble Dynamics in Boiling Under High Heat Flux Pulse Heating, Journal of Heat Transfer, vol. 113, pp973-979, 1991.
    [9] Y. Iida, K. Okuyama, and K. Sakurai, Boiling Nucleation on a Very Small Film Heater subjected to extremely rapid Heating, International Journal of Heat and Mass Transfer, Vol.37, No. 17, pp. 281-296, 1994.
    [10] K. Okuyama and Y. Iida, Boiling Bubble Behavior and Heat Transfer Succeeding Spontaneous Nucleation on a Film Heater, Heat Transfer 1998, 11th IHTC, vol. 2, pp.527-532, 1998.
    [11] C. T. Avedisian, W. S. Osborne, F. D. McLeod, and C. M. Curley, Measuring Bubble Nucleation Temperature on the Surface of Rapidly Heated Thermal Ink-Jet Heater Immersed in a Pool of Water, Proc. of R. Soc. Lond. 455,pp. 3875-3899, 1999.
    [12] S. aus der Wiesche, C. Rembe, and E. P. Hofer, Boiling of Superheated Liquids near the Spinodl: I General Theory, Heat and Mass Transfer, vol. 35, pp. 25-31, 1999
    [13] S. aus der Wiesche, C. Rembe, and E. P. Hofer, Boiling of Superheated Liquids near the Spinodl: II Application, Heat and Mass Transfer, vol. 35, pp. 143-147, 1999.
    [14] W. J. Yang and K. Tsutsui, Overview of Boiling on Micorstructures-Macro Bubbles from Micro Heaters, Microscale Thermalphysical Engineering, vol.4, pp. 7-24, 2000.
    [15] S. Glod, D. Poulikakos, Z. Zhao, and G. Yadigaroglu, An Investigation of Microscale Explosive Vaporization of Water on an Ultrathin Pt Wire, International Journal of Heat and Mass Transfer, vol.45, pp. 267-379,2002.
    [16] J. Y. Jung, H. C. Park, and H. Y. Kwak, Bubble Nucleation and Growth on Surface of Rapidly Heated Micro Heaters, Proc. of IMECE2002, IMECE2002-32777, pp. 1-7, 2002.
    [17] J. Y. Jung, J. Y. Lee, H. C. Park, and H. Y. Kwak, Bubble Nucleation on Micro Line Heaters Under Steady of Finite Pulse of Voltage Input, International Journal of Heat and Mass Transfer, vol.46, pp. 3897-3907,2003.
    [18] Y. Hong, N. Ashgriz, and J. Andrews, Experimental Study of Bubble Dynamics on A Micro Heater Induced by Pulse Heating, Journal od Heat Transfer, vol. 126, pp259-271, 2004.
    [19] L. W. Lin, A. P. Pisano, and V. P. Carey, Thermal Bubble Formation on Polysilicon Micro Resistors, Journal of Heat Transfer, vol. 120, pp735-742, 1998
    [20] S. Takagi, N. Yamamoto, T. Inoue, and K. Hijikata, Behavior of a Boiling Bubble from a Micro-scale Heater, Proceeding of the 11th IHTC, Vol. 2, pp.479-484, 1998
    [21] M. T. Lin, W. J. Yang and L.W. Lin, A Preliminary Study of Boiling on Micro Line Heaters, 11th International Symposium on Transport Phenomena, pp. 492-506, Nov. 29 - Dec. 3,Hsin-Chu, Taiwan, 1998.
    [22] J. H. Tsai and L. W. Lin, Transient Thermal Bubble Formation on Polysilicon Micro-Resisters, Journal of Heat Transfer, vol. 124, pp375-782, 2002.
    [23] F. G. Tseng, C. J. Kim, and C. M. Ho, A High-Resolution High Frequency Monolithic Top-Shooting Microinjector Free of Satellite Drops – Part I: Concepts, Designs and Molding, Journal of Microelectromechanical Systems,Vol.11, No.5, pp. 427-436, 2002
    [24] R. L. Judd and C. H. Lavdas, The Nature of Nucleation Site Interaction, Journal of Heat Transfer, Vol. 102, pp.461-464,1980.
    [25] A. Calka and R. L. Judd, Some aspects of the Interaction among Nucleation Sites During Saturated Nucleate Boiling, Int. J. Heat Mass Transfer, Vol. 28, No.12, pp.2331-2342, 1985.
    [26] R. L. Judd, On Nucleation Site Interaction, Journal of Heat Transfer, Vol. 110, pp.475-478, 1988.
    [27] R. L. Judd and A. Chopra, Interaction of the Nucleation Process Occurring at Adjacent Nucleation Sites, Journal of Heat Transfer, Vol. 115, pp.955-962, 1993.
    [28] C. W. Stewart, Bubble Interaction in Low-Viscosity Liquids, International Journal of Multiphase Flow, Vol.21, No.6, pp.1037-1046, 1995.
    [29] Y. Abe and A. Iwasaki, Microgravity Experiments on Dual Vapor Bubbles of Self-Wetting Fluid, Space Technology and Applications International Forum-STAIF 2002, pp189-196.
    [30] S. Rungsiyaphornrat et al, The merging of two gaseous bubbles with an application to underwater explosions, Computers and Fluids, Vol.32, pp.1049-1074, 2003.
    [31] T. Chen and J. N. Chung, Heat-transfer Effects of Coalescence of Bubbles from Various Site Distributions, Proceedings of the Royal Society of London – A, Vol.459, pp.2497-2527,2003.
    [32] J. Bonjour et al, Experimental Study of the Coalescence Phenomenon During Nucleate Pool Boiling, Experimental Thermal and Fluid Science, Vol.20, pp.180-187, 2000.
    [33] M. Blander and J. L. Katz, Bubble Nucleation in Liquids, AICHE Journal, Vol. 21, pp.833-848, 1975.
    [34] J. G. Collier and J. R. Thome, Convective boiling and condensation, Oxford University Press, New York, 1994.
    [35] S. G. Bankoff, Ebullition from Solid Surfaces in the Absence of a Pre-existing Gaseous Phase, Transaction of ASME, vol. 79, pp.735-740.
    [36] V. P. Carey, Liquid-Vapor Phase Change Phenomena, Ch.3&5, Taylor&Francis, Bristol, Pa, USA.
    [37] J. Sung and J. Y. Yoo, Three-dimensional phase averaging of time-resolved PIV measurement data, Meas. Sci. Technology, vol.12, pp. 655–662, 2001.
    [38] S. J. Lee, J. Choi, and J. H. Yoon, Phase-Averaged Velocity Field Measurements of Flow Around an Isolated Axial-Fan Model, Journal of Fluids Engineering, Vol. 125, pp.1067-1077, 2003.
    [39] Http://www.dantecdynamics.com/piv/princip/index.html,
    Measurement Principles of PIV, Dantec Dynamics A/S, Tonsbakken 16-18
    P.O. Box 121,DK-2740 Skovlunde, Denmark.
    [40] C. D. Meinhart et al, Volume illumination for two-dimensional particle image velocimetry, Meas. Sci. Technology, Vol.11, pp. 809–814, 2000
    [41] C. Bruker, Structure and Dynamics of the Wake of Bubbles and Its Relevance for Bubble Interaction, Physics of Fluids Vol.11, no.7, pp.1781-1796,1999.
    [42] Y. M. C. Delaure et al, A Simultaneous PIV and Heat Transfer Study of Bubble Interaction with Free Convection Flow, Experimental Thermal and Fluid Science, vol.27, pp.911-926, 2003.
    [43] Fujiwara et al, Bubble Deformation and Flow Structure Measured by Double Shadow Images and PIV/LIF, A, Experiments in Fluids, Vol.36, pp.157-165, 2004.
    [44] T. A. Kowalewski et al, Particle Image Velocimetry for Vapour Bubble Growth Analysis, Proceedings of the 8th International Conference Laser Anemometry Advanced and Applications, pp.243-250, Rome Sept.6-8,1999.
    [45] T. A. Kowalewski et al, Visualization of Vapour Bubble Growth, Proceedings of the 9th International Symposium on Flow Visualization, paper number 176, Edinburgh, 2000.
    [46] M. M. Lee, T. J. Hanratty, and R. J. Adrian, An Axial Viewing Photographic Technique to Study Turbulence /characteristics of Particles, J. Multiphase Flow, Vol. 15, pp787-802 (1989)
    [47] T. Lindemann, D. Sassano, A. Bellone, R. Zengerle, and P. Koltay, Three-Dimensional CFD-Simulation of a Thermal Bubble Jet Printhead, Boston, 7-11 March 2004, NSTI-Nanotech 2004, Vol.2, pp.227-230.
    [48] S. van Stralen and R. Cole, Boiling Phenomena, McGraw-Hill Co.,1979.
    [49] J. U. Brackbill, D. B. Kothe, and C. Zemach, A Continuum Method for Modeling Surface Tension, J. Comp. Phys, 1992, 100,335-354.
    [50] D. B. Kothe, W. J. Rider, S. J. Mosso, and J. S. Brock, Volume Tracking of Interfaces having Surface Tension in Two and Three Dimension, Proceedings of the 34th Aerospace Science Metting and Exhibition 1996, AIAA-96-0859, pp.1-24.
    [51] W. J. Rider and D. B. Kothe, Streching and Tearing Interface Tracing Methods, Proceedings of the 33rd Aerospace Science Meeting and Exhibition 1995, AIAA-95-1717, pp. 1-11.
    [52] L. Rayleigh, On the Pressure developed in a Liquid during the Collapse of a Spherical cavity, Philosophical Magazine vol.34, no.199, pp.94-98, 1917.
    [53] G. H. Goldsztein, Collapse and rebound of a gas bubble, Studies in Appl. Math., vol. 112, pp. 101-132, 2004.
    [54] I. D. Yang, F. G. Tseng, C. M. Chang, and C. C. Chieng, Microbubble Formation Dynamics under High Heat Flux on Heaters with Different Aspect Ratios, accepted by Journal of Microscale Thermophysical Engineering.
    [55] I-Da Yang, Yu-Feng Chen, Fangang Tseng, Hui-Ting Hsu, and Ching-Chang Chieng*, Surface Tension Driven and 3-D Vortex Enhanced Rapid Mixing Micro Chamber, accepted by Journal of Microscale Thermophysical Engineering.
    [56] I. D. Yang, T.F. Wu, C. Pan, F. G. Tseng, R.J. Yu, and C.C. Chieng*, Droplet Ejection and the Induced Flowfield by Micro Thermal Bubble During Growth/Collapse Process, submit to Journal of Mechanical Engineering Science - Part C.
    [57] I. D. Yang, F. G. Tseng, and C. C. Chieng, Bubble Dynamics for Explosive Micro Thermal Dual Bubbles PART I: Visualization and Analysis of Growth/Collapse Process, submit to Journal of Micro Electronic and Mechanic System.
    [58] I. D. Yang, F. G. Tseng, and Ching-Chang Chieng, “Bubble Dynamics for Explosive Micro Thermal Dual Bubbles PART II: Experimental and Numerical Investigations on the Induced Flowfields and Bubble Interactions”, submit to Journal of Micro Electronic and Mechanic System.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE