研究生: |
任春平 Jen, Chun-Ping |
---|---|
論文名稱: |
放射性核種於裂縫岩層中傳輸現象之研究— 膠體對傳輸之影響 TUDIES OF RADIONUCLIDE TRANSPORT IN FRACTURED MEDIA — COLLOID-FACILITATED TRANSPORT |
指導教授: |
李四海
Li, Shih-Hai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2000 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 核種遷移 、膠體 、裂縫 、非平衡 、多孔性 |
外文關鍵詞: | radionuclide migration, colloid, fracture, non-equilibrium, porous |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用數學模式來描述核種與膠體在多孔性介質中的傳輸行為,並考慮核種本身的放射性衰變。透過線性平衡吸附的假設,核種與膠體在多孔性岩層的傳輸方程式,可求得解析解。由解析解中可以發現,膠體的濃度、膠體速度以及對核種的吸附係數,明顯影響核種於地下水系統之傳輸。懸浮於地下水中之膠體,對於核種的傳輸具有加速作用,而不可移動的岩層則扮演延遲核種傳輸的機制。而另一方面吸附於岩層之不可移動膠體的量越多,也將阻滯核種的傳輸。由於在地下水中,膠體的組成與成分相當複雜,因此,在本論文中,也考慮了核種與膠體間非平衡吸附機制的影響,同時,核種與多孔性岩層間的非平衡吸附作用在此也一併考慮。當核種與岩層、核種與膠體間的吸附作用考慮為非平衡時,在本論文中,以數值方法求解來討論其物理現象。由數值結果可知吸附作用的反應速率速率,對核種傳輸的影響非常明顯。
對於高階放射廢料的深地層處置,核種的遠場傳輸計算,須考慮核種於裂縫岩層中的傳輸行為。研究指出,膠體的傳輸速度與地下水的流速不同,膠體由於受到外力(靜電力、凡得瓦力等等),可能趨向通道中心,而有較高的速度分布。本論文建立理論分析模型,探討無反應的膠體顆粒在裂縫中之濃度分布情形,考慮膠體受到靜電力、凡得瓦力、慣性力以及重力。分析膠體在裂縫中的受力情形,可得到膠體在達到完全發展時之濃度分布,而進一步求得膠體在裂縫中的平均速度。在求得膠體的平均速度後,經由核種與膠體在裂縫中的傳輸方程式,將核種與膠體以及岩層間的吸附作用視為平衡吸附,可求得核種濃度之解析解。同時,膠體的傳輸參數,如:延散係數、與核種之吸附係數以及平均流速,也受到膠體顆粒大小的影響。將膠體尺寸的影響引進傳輸參數中,可以由解析解看出膠體大小對核種於裂縫岩層中傳輸之影響。膠體的顆粒大小分布,在自然界中,並不是均勻分布的單分散性的膠體,而是不同顆粒尺寸組合的多分散性膠體。本論文中採用文獻中的膠體顆粒分布,討論膠體顆粒分布對核種傳輸的影響。
This thesis investigates the colloid-facilitated migration of radionuclides with radioactive decay in porous media. The sorption processes for radionuclides with both the solid matrix and colloids are treated as equilibrium or nonequilibrium. An analytical solution is obtained from a simplified linear equilibrium interaction mechanism. In addition, the adsorption processes for radionuclides with colloids and porous rock can be assumed as nonequilibrium and modeled by the linear kinetic adsorption. The numerical method is employed to solve the coupled colloid and radionuclide transport equations under nonequilibrium sorption assumption. Although colloids act as vehicles to enhance the migration of radionuclides, the solid matrix has a retardation effect. Moreover, the reaction rates of the adsorption processes for radionuclides with the solid matrix and colloids affect the transport characteristics of radionuclides. The fast reaction rate of radionuclides with colloids causes a higher concentration of radionuclides adsorbed on colloids in a dispersed phase and enlarges acceleration caused by colloids. However, the fast reaction rate for radionuclides with solid matrix increases the retardation effect caused by the solid matrix.
The performance assessment of high level radioactive waste disposal has emphasized the role of colloids in the migration of radionuclides in the fractured rock. Previous literature indicates that owing to hydrodynamic chromatography the colloid velocity may not be equal to that of groundwater. Using hydrodynamic chromatography, this thesis also investigates the effects of the size of colloidal particles on the radionuclide migration facilitated by colloids in a single fractured porous rock. Also, a methodology is proposed to develop a predictive model to assess transport within the fracture rock as well as various other phenomenological coefficients, particularly the size of colloidal particles. In addition, a fully developed concentration profile for non-reactive colloids in the fracture is developed to elucidate hydrodynamic chromatography of colloids in geological media. The external forces acting on colloidal particles hypothesized in the model proposed herein include inertial force, van der Waals attractive force, double layer force as well as gravitational force. The dispersion coefficient of colloids and the distribution coefficient for radionuclides with colloids are also considered as they pertain to the size of the colloid. In addition, the size distributions of colloids are utilized to investigate the effects of polydispersed colloids.
1. AbdelSalam, A. and Chrysikopoulos, C. V., "Analysis of a model for contaminant transport in fractured media in the presence of colloids," J. Hydrol., 165, 261, 1995.
2. Avogadre, A. and DeMarsily, G., "The role of colloids in nuclear waste disposal," Mat. Res. Soc. Symp. Proc., 26, 495, 1984.
3. Baek, I and Pitt, Jr, W. W., "Colloid-facilitated radionuclide transport in fracture porous rock," Waste Manag., 16(4), 313, 1996.
4. Baik, M. H. and Hahn, P. S., "Radionuclide transport facilitated by polydispersed pseudo-colloids in the fracture rock media," J. Nucl. Sci. Technol., 34(1), 41, 1997.
5. Bates, J. K., Bradley, J. P., Teetsov, A., Bradley, C. R. and Buchholtz ten Brick, M., "Colloid formation during waste form reaction: Implication for nuclear waste disposal," Science, 256, 649, 1992.
6. Bear, J. and A. Verruijt, Modeling Groundwater Flow and Pollution, D. Reidel, Dordrecht, 1987.
7. Bedient, B. P., Rifai, H. S. and Newell, C. J., Groundwater Contamination Transport and Remediation, 1st ed., p.164, PTR Prentice-Hall, New Jersey 1994.
8. Bell, G. M., Levine, S. and McCartney, L. N., "Approximate methods of determining the double-layer free energy of interaction between two charged colloidal spheres," J. Colloid Interface Sci., 33, 335, 1970.
9. Bonano, E. J. and Beyeler, W. E., "Transport and capture colloidal particles in single fractures," Mat. Res. Soc. Symp. Proc., 44, 385, 1985.
10. Brusseau, M. L., Rao, P. S. C., and Jessup, R. E., "Modeling the transport of solutes influenced by multiprocess nonequilibrium," Water Resour. Res., 25(9), 1971, 1989.
11. Cacheris, W. P. and Choppin, G. R., "Dissociation kinetics of thorium-humate complex," Radiochim. Acta, 42, 185, 1987.
12. Chang, H. C., Healy, T. W. and Matijevic, E., "Interactions of metal hydrous oxides with chelating agents-III. adsorption on spherical colloidal hematite particles," J. Colloid Interface Sci., 92(2), 469, 1983.
13. Chapman, N. A., McKinley, I. G. and Hill, M. D., The Geological Disposal of Nuclear Waste, John Wiley & Sons, New York, 1987.
14. Chen, C. S., "Solutions for radionuclide transport from an injection well into a single fracture in a porous formulation," Water Resour. Res., 22(4), 508, 1986.
15. Chen, F. L. and Li, S. H., "Derivation of an equation for radionuclide transport in porous media," Nucl. Technol., 90, 215, 1990.
16. Chiou, S. L. and Li, S. H., "Migration of radionuclides in fractured porous rock: Analytical solution for a flux-type boundary condition," Nucl. Technol., 101(1), 92, 1993.
17. Choppin, G. R., "The role of natural organics in radionuclide migration in natural aquifer systems," Radiochim. Acta, 58/59, 113, 1992.
18. Chung J. Y. and Lee, K. J., "Formation and transport of radioactive colloids in porous media," Waste Manag., 13(8), 599, 1993.
19. Corapcioglu, M. Y. and Jiang, S., "Colloid-facilitated groundwater contaminant transport," Water Resour. Res., 29(7), 2215, 1993.
20. Cox, R. G. and Brenner, H., "The lateral migration of solid particles in Poiseuille flow: 1. Theory," Chem. Eng. Sci., 23, 147, 1968.
21. Cox, R. G. and Hsu, S. K., "The lateral migration of solid particles in a laminar flow near a plane," Int. J. Multiphase Flow, 3, 201, 1976.
22. DiFelice, R., "A relationship for the wall effect on the settling velocity of a sphere at any flow regime," Int. J. Multiphase Flow, 22(3), 527, 1996.
23. DiMarzio, E. A. and Guttman, C. M., "Separation by flow," Macromolecules, 3(2), 131, 1970.
24. DiMarzio, E. A. and Guttman, C. M., "Separation by flow," Polym. Lett., 7, 267, 1969.
25. Fetter, C. W.. Contaminant Hydrogeology, p.117, Macmillan Publishing Co., New York, 1993.
26. Francis, A. W., "Wall effect in falling ball method for viscosity," Physics, 4, 403, 1933.
27. Goldman, A. J., Cox, R. G. and Brenner, H., "Slow viscous motion of a sphere parallel to a plane wall - II Couette Flow," Chem. Eng. Sci., 22, 653, 1967.
28. Grindrod, P., "The dispersal of colloids in fractured rock," Proc. Symp. Validation of Geosphere Flow and Transport Models (GEOVAL). OECD (Org. Econ. Coop. Dev.), Paris, 210, 1991.
29. Grindrod, P., Brown, R. C. and Gealy, N. D., SKI Tech. Rep., TR 92-19, 1992.
30. Gutierrez, M. G., Bidoglio, G., Avogadro, A., Mingarro, E. and D'Alessandro, M. "Experimental investigations of radionuclide transport through cored granite samples," Radiochim. Acta, 52/53, 213, 1991.
31. Hamaker, H. C., "The London-van der Waals attraction between spherical particles," Physica, 4, 1058, 1937.
32. Ho, B. P. and Leal, L. G., "Inertial migration of rigid spheres in two-dimensional unidirectional flows," J. Fluid Mech., 65, 365, 1974.
33. Hunter, R. J., Foundations of Colloid Science, Oxford University Press Inc., New York, 1987.
34. Hwang, Y., Chambre, P. L., Lee, W. W.-L. andPigford, T. H., "Analytical studies of colloid transport in fractured porous media," Mater. Res. Soc. Symp. Proc., 176, 599, 1990.
35. Ibaraki, M. and Sudicky, E. A., "Colloid-facilitated contaminant transport in discretely fractured porous media — 1. Numerical formulation and sensitivity analysis," Water Resour. Res., 31(12), 2945, 1995.
36. Ibaraki, M. and Sudicky, E. A., "Colloid-facilitated contaminant transport in discretely fractured porous media — 2. Fracture network examples," Water Resour. Res., 31(12), 2961, 1995.
37. James, M. L., Smith, G. M. and Wolford, J. C., Applied numerical methods for digital computation, 4th edition, HaperCollins College Publishers, New York, 1993.
38. James, R. O. and Healy, T. W., "Adsorption of hydrolyzable metal ions at the oxide-water interface-III. A thermodynamic model of adsorption," J. Colloid Interface Sci., 40(1), 65, 1972.
39. Jen, C. P. and Li, S. H., "Modeling migration of radionuclides in porous rock in the presence of colloids," Nucl. Sci. J., 2000a (accepted ).
40. Jen, C. P. and Li, S. H., "Effects of hydrodynamic chromatography on colloid-facilitated migration of radionuclides in the fractured Rock," Waste Manag., 2000b (accepted).
41. Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K. and Thompson, J. L., "Migration of plutonium in ground water at the Nevada Test Site," Nature, 397, 56, 1999.
42. Kim, J. I., Buckau, G., Rommel, H. and Sohnius, B., "The migration behaviour of transuranium elements in Gorleben aquifer systems: colloid generation and retention process," Mater. Res. Soc. Symp. Proc., 127, 849, 1989.
43. Li, S. H. and Jen, C. P., " Migration of radionuclides in porous rock in the presence of colloids: effects of kinetic interactions," Waste Manag., 2000a (accepted).
44. Li, S. H. and Jen, C. P., "Modeling of hydrodynamic chromatography for colloid migration in the fractured rock," Nucl. Technol., 2000b (accepted).
45. Lieser, K. H., Ament, A., Hill, R., Singh, R. N., Stingl, U., and Thybusch, B., "Colloids in groundwater and their influence on migration of trace elements and radionuclides", Radiochim. Acta, 49, 83, 1990.
46. McCarthy, J. F. and Zachara, J. M., "Subsurface transport of contaminants", Environ. Sci. Technol., 23(5), 496, 1989.
47. McDowell-Boyer, L. M., Hunt, J. R. and Sitar, N., "Particle-transport through porous media," Water Resour. Res., 22(13), 1901, 1986.
48. McKinley, J. P. and Jenne, E. A., "Experimental investigation and review of the solid concentration effect in adsorption studies," Environ. Sci. Technol., 25(12), 2082, 1991.
49. Mills, W. M., Liu, S and Fong, F. K. "Literature review and model (COMET) for Colloid/Metal transport in porous media," Groundwater, 29, 199, 1991.
50. Murphy, W. M. and Smith, R. W., "Irreversible dissolution of solid solution: A kinetic and stoichiometric model," Radiochim. Acta, 44/45, 395, 1988.
51. Nagasaki, S., Tanaka, S. and Suzuki, A., "Fast transport of colloidal particles through quartz-packed columns," J. Nucl. Sci. Technol., 30(11), 1136, 1993.
52. Nagasaki, S., Tanaka, S. and Suzuki, A., "Influence of Fe(III) colloids on Np(V) migration through quartz-packed columns," J. Nucl. Sci. Technol., 31(2), 143, 1994.
53. Nelson, D. M. and Orlandini, K. A., "Source effects on actinide movement in groundwater," ANL 86-15, Argonne National Laboratory, 1986.
54. Oshima, H., Healy, T. W. and White, L. R., "Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle," J. Colloid Interface Sci., 90, 17, 1982.
55. Prieve, D. C. and Hoysan, P. M., "Role of colloidal forces in hydrodynamic chromatography," J. Colloid Interface Sci., 64(2), 201, 1978.
56. Puls, R. W. and Powell, R. M. "Surface-charge repulsive effects on the mobility of inorganic colloids in subsurface systems," Transport and Remediation of Subsurface Contaminants, Chap. 4, American Chemical Society, Washington, DC, 1992.
57. Ramsay, J. D. F., "The role of colloids in the release of nuclides from nuclear waste", Radiochim. Acta, 44/45, 165, 1988.
58. Rasmuson, A. and Neretnieks, I., "Radionuclide transport in a fast channels in crystalline rock," Water Resour. Res., 22(8), 1247, 1986.
59. Saiers, J. E. and Hornberger, G. M., "The role of colloidal kaolinite in the transport of cesium through laboratory sand columns," Water Resour. Res., 32(1), 33, 1996.
60. Saiers, J. E., Hornberger, G. M. and Liang, L., "First- and second-order kinetics approaches for modeling the transport of colloidal particles in porous media," Water Resour. Res., 30(9), 2499, 1994.
61. Saltelli, A., Avogadro, A. and Bidoglio, G., "Americium filtration in glauconitic sand columns," Nucl. Technol., 67, 245, 1984.
62. Schaller, E. J. and Humprey, A. E., "Electroviscous effects in suspension of monodisperse spherical particles," J. Colloid Interface Sci., 22, 573, 1966.
63. Segré, G. and Silberberg, A., "Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. determination of local concentration by statistical analysis of particle passages through crossed light beams," J. Fluid Mech., 14, 115, 1962.
64. Segré, G. and Silberberg, A., "Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. experimental results and interpretation," J. Fluid Mech., 14, 136, 1962.
65. Silebi, C. A. and McHugh, A. J., "An analysis of flow separation in hydrodynamic chromatography of polymer latexes," AIChE J., 24(2), 204, 1978.
66. Small, H., "Hydrodynamic chromatography: A technique for size analysis of colloidal particles," J. Colloid Interface Sci., 48(1), 147, 1974.
67. Summer, R. S. and Roberts, P. V., "Activated carbon adsorption of humic substances," J. Colloid Interface Sci., 122(2), 367, 1988.
68. Tanaka, S. and Nagasaki, S., "Impact of colloid generation on actinide migration in high-level radioactive waste disposal: Overview and laboratory analysis," Nucl. Technol., 118(1), 58, 1997.
69. Tang, D. H., Frind, E. O. and Sudicky, E. A., "Contaminant transport in fractured porous media: analytical solution for single fracture," Water Resour. Res., 17(3): 555, 1981.
70. Tang, Y. S. and Saling, J. H., Radioactive Waste Management, Hemisphere Publishing Corporation, New York, 1990.
71. Teng, S. P. and Lee, C. H., "Effects of nonequilibrium adsorption on nuclide transport in a porous rock," Mater. Res. Soc. Symp. Proc., 333, 739, 1994.
72. Van de Weerd, H., Leijnse, A. and VanRiemsdijk, W. H., "Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions," J. Contam. Hydrol., 32, 313, 1998.
73. Van der Lee, J., Ledoux E., and DeMarsily, G., "Modeling of colloidal uranium transport in a fractured medium," J. Hydrol., 139, 135, 1992.
74. Vasseur, P. and Cox, R. G., "The lateral migration of a spherical particle in two-dimensional shear flows," J. Fluid Mech., 78(2), 385, 1976.
75. Visser, J., "On Hamaker constant: a comparison between hamaker constants and lifshitz - van der Waals constants," Advan. Colloid Interface Sci., 3, 331, 1972.
76. Wang, H. F. and Anderson, M. P., Introduction to groundwater modeling: finite difference and finite element methods, W. H. Greeman, New York, 1982.