研究生: |
舒安琪 An-Chi Shu |
---|---|
論文名稱: |
使用溶液式原子力顯微鏡探討大腸桿菌接合生殖中DNA的傳遞 Investigation of DNA Transfer during Escherichia coli Conjugation by Liquid Atomic Force Microscopy |
指導教授: |
游萃蓉
Tri-Rung Yew |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 大腸桿菌 、接合生殖 、原子力顯微鏡 |
外文關鍵詞: | E. coli, Escherichia coli, Conjugation, Atomic Force Microscopy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,利用溶液式原子力顯微鏡(liquid atomic force microscopy, Liquid AFM)研究大腸桿菌(Escherichia coli, E. coli)授株(donor strain) AT2453與受株(recipient strain) AB1157接合生殖作用(conjugation)中DNA的傳遞機制。與其他高解析度的顯微鏡技術相比,例如掃描電子顯微鏡(scanning electron microscopy, SEM) 以及穿透式電子顯微鏡(transmission electron microscopy, TEM),AFM最令人驚豔的優勢在於其能讓生物樣品處於生理條件下(physiological condition)進行觀察與研究。AFM系統同時也可以作為極為精準的力量測儀器。因此可利用AFM力譜(AFM force spectroscopy),藉由經ssDNA抗體(anti-single-stranded DNA antibody)修飾之AFM探針,研究活體大腸桿菌接合生殖中DNA的傳遞機制。
在本研究中,將培養至對數生長中期(mid-log growth phase)的大腸桿菌AT2453與AB1157固定在蓋玻片上。先利用AFM探針對介於大腸桿菌AT2453與 AB1157接合生殖對(mating pair)之間的性線毛(sex-pilus, 亦稱F-pilus)進行成像後再加以切割,而後再以anti-ssDNA antibody修飾過之AFM探針,對已被切割的性線毛切口處進行力量測。為了與上述比較,也對完整的性線毛上或遠離切口處的區域進行力量測。另外,更對純ssDNA樣品進行力量測,用以進一步確認單一ssDNA與anti-ssDNA antibody間鍵結力的大小。根據本研究之AFM力譜量測結果,只有在性線毛切口處發現量測到DNA,其量測到的力大小為109 ± 5 pN。也因此本研究提供一個直接的證據,證明大腸桿菌接合生殖時,是經由大腸桿菌接合生殖對間的性線毛中空管狀通道進行DNA的傳遞。
The mechanism of DNA-transfer from Escherichia coli (E. coli) Hfr donor strain AT2453 to recipient strain AB1157 during conjugation process has been investigated by liquid atomic force microscopy (AFM) in this work. Compared with other techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the most fascinating advantage of AFM as a high-resolution microscope is that it allows investigations and observations of biological species in physiological conditions. The AFM system can also be used as an ultra-sensitive force-measurement apparatus as reported earlier. By decorating anti-ssDNA (anti-single-stranded DNA) antibody onto AFM probes, we can utilize the AFM force-spectroscopy and the specific binding between ssDNAs and anti-ssDNA antibody to detect the presence of ssDNA, so as to investigate the DNA transfer mechanism during E. coli conjugation in vivo.
In this study, both E. coli AT2453 and AB1157 were cultured and then immobilized on glass coverslip. The F-pilus between the E. coli AT2453 and AB1157 mating pair was imaged by an AFM probe and then dissected. Another AFM probe decorated with an anti-ssDNA antibody was applied to detect the ssDNA in the dissected area and measure the binding force between ssDNA and its antibody. As comparisons, the force-measurements were also conducted on undamaged F pilus or regions away from the dissected area. In addition, the measurements on pure ssDNAs were carried out to further confirm the value of binding force between ssDNA and anti-ssDNA antibody. According to the AFM force spectra, the transferred-ssDNA was only detected in the dissected area with a binding force of 109 ± 5 pN measured. Our results provide direct evidence that the DNA was transferred through the F-pilus channel between an E. coli mating pair during their conjugation.
1. Medigue, C., Rouxel, T., Vigier, P., Henaut, A. and Danchin, A. Evidence for horizontal gene transfer in Escherichia coli speciation. J. Mol. Biol. 222, 851-856 (1991).
2. Ippen-Ihler, K.A. and Minkley, E.G., Jr. The conjugation system of F, the fertility factor of Escherichia coli. Annu. Rev. Genet. 20, 593-624 (1986).
3. Gelvin, S.B. Agrobacterium-Mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67, 16–37 (2003).
4. Harrington, L.C. and Rogerson A.C. The F pilus of Escherichia coli appears to support stable DNA transfer in the absence of wall-to-wall contact between cells. J. Bacteriol. 172, 7263–7264 (1990).
5. Samuels, L., Lanka, E., and Davies, J.E. Conjugative junctions in RP4-mediated mating of Escherichia coli. J. Bacteriol. 182, 2709–2715 (2000).
6. Panicker, M.M. and Minkley, Jr., E.G. DNA transfer occurs during a cell surface contact stage of F sex factor-mediated bacterial conjugation. J. Bacteriol. 162, 584–590 (1985).
7. Stephanie, A. et al. Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry 36, 7457–7463 (1997).
8. Stroh, C. et al. Single-molecule recognition imaging microscopy. Proc. Natl. Acad. Sci. 101, 12503–12507 (2004).
9. Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K. and Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. 93, 3477–3481 (1996).
10. Guthold, M., et al. Visualization and mechanical manipulations of individual fibrin fibers suggest that fiber cross section has fractal dimension 1.3. Biophys. J. 87, 4226–4236 (2004).
11. Schoenenberger, C.A. and Hoh, J.H. Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys. J. 67, 929–936 (1994).
12. Bustamante, C., Rivetti, C. and Keller, D.J. Scanning force microscopy under aqueous solutions. Curr. Opin. Struct. Biol. 7, 709–716 (1997).
13. Dahlberg, C., Bergström, M. and Hermansson, M. In situ detection of high levels of horizontal plasmid transfer in marine bacterial communities. Appl. Environ. Microbiol. 64, 2670–2675 (1998).
14. Lederberg, J. and Tatum, E.L. Gene recombination in Escherichia coli. Nature. 158, 558 (1946).
15. Beadle, G.W. and Tatum, E.L. Genetic control of biochemical reactions in neurospora. Proc. Natl. Acad. Sci. 11, 499–506 (1941).
16. Lederberg, J. Gene recombination and linked segregations in Escherichia coli. Genetics 32, 505–25 (1947).
17. Frost, L.S., Ippen-Ihler, K. and Skurray, R.A. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev. 58, 162-210 (1994)
18. Haase, J., Lurz, R., Grahn, A.M., Bamford, D.H. and Lanka, E. Bacterial conjugation mediated by plasmid RP4 RSF1010 mobilization, donor-specific phage. J. Bacteriol. 177, 4779-4791 (1995).
19. Binnig, G., Rohrer, H., Gerber, C. and Weibel, E. Atomic force microscope Phys. Rev. Lett. 49, 56 (1982).
20. G. Binnig, C. F. Quate and Ch. Gerber, Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 56, 930 (1986).
21. Benoit, M., Holstein, T. and Gaub, H. E. Lateral forces in AFM imaging and immobilization of cells and organelles. Eur. Biophys. J. Biophy. 26, 283–290 (1997).
22. Doktycz, M.J., Sullivanc, C.J., Hoyt, P.R., Pelletier, D.A., Wu, S. and Allison, D.P. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 97, 209–216 (2003).
23. Piner, R.D., Zhu, J., Xu, F., Hong, S. H. and Mirkin, C. A. “Dip-pen” nanolithography. Science 283, 661–663 (1999).
24. Velegol, S.B. & Logan, B.E. Contributions of bacterial surface polymers, electrostatics, and cell elasticity to the shape of AFM force curves. Langmuir 18, 5256–5262 (2002).
25. Acosta-Gio, A.E., Rueda-Patino, J. L., and Sanchez-Perez, L. Sporicidal activity in liquid chemical products to sterilize or high-level disinfect medical and dental instruments. Am. J. Infect. Contr. 33, 307–309 (2005).
26. Vadillo-Rodriguez et al. Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. Appl. Environ. Microbiol. 70, 5541–5546 (2004).
27. Cail, T.L., and Hochella, M.F. The effects of solution chemistry on the sticking efficiencies of viable Enterococcus faecalis: An atomic force microscopy and modeling study. Geochim Cosmochim Acta 69, 2959–69 (2005).
28. Gad, M. and lkai, A. Method for Immobilizing Microbial cells on gel surface for dynamic AFM studies. Biophys. J. Volume 69, 2226–2233 (1995).
29. Camesano, T.A. and Logan, B.E. Probing bacterial electrosteric interactions using atomic force microscopy. Environ. Sci. Technol. 34, 3354–3362 (2000).
30. Emerson, R.J. and Camesano T.A. Nanoscale investigation of pathogenic microbial adhesion to a biomaterial. Appl. Environ. Microbiol. 70, 6012–6022 (2004).
31. Hinterdorfer. P. and Dufrenem, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).
32. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H.E. How strong is a covalent bond. Science 283, 1727–1730 (1999).
33. Gattett, R.H. and Grishham, C.M. “Biochemistry”, 2nd. Ed. Saunders college publishing, Fig. 7.31 (1995).
34. Wild D, “The Immunoassay Handbook”, 2nd Ed. Nature Publishing Group, 395–398 (2001).
35. Dequaire, M., Degrand, C. and Limoges, B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal. Chem. 72, 5521 (2000).
36. Taylor, A.L. & Thoman, M.S. The genetic map of Escherichia coli K-12. Genetics 50, 659–677 (1964).
37. Xiao, Y., Ju, H.X. and Chen, H.Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Anal. Chim. Acta. 391, 73–82 (1999).
38. Wenzler, L. A., Moyes, G. L., Olson, L. G., Harris, J. M. and Beebe, T. P. Single-molecule bond-rupture force analysis of interactions between AFM tips and substrates modified with organosilanes. Anal.Chem. 69, 2855–2861 (1997).
39. Lo, Y. S., Huefner, N. D., Chan, W. S., Stevens, F., Harris, J. M. and Beebe, T. P. Specific interactions between biotin and avidin studied by atomic force microscopy using the Poisson statistical analysis method. Langmuir. 15, 1373–1382 (1999).