研究生: |
鄭劭鈞 Cheng, Shao-Chun |
---|---|
論文名稱: |
適用於風力發電之無感測型雙饋感應發電機組適應控制器開發與實現 Implementations and Developments of Adaptive Control Techniques of Sensorless Doubly-Fed Induction Generators for Wind Generations |
指導教授: |
朱家齊
Chu, Chia-Chi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 雙饋式感應發電機 、無感測控制器 、定子磁場導向控制 、參考模型適應性系統 、全階磁通估測器 、即時控制平台 |
外文關鍵詞: | Doubly-Fed Induction Generators, Sensorless Controller, Stator Flux Oriented Control, Model-Reference Adaptive System (MRAS), Full-Order Flux Observer, xPC |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙饋式感應發電機具有變速恆頻之性能,且降低所需電力轉換器之額定功率,特別適用於經常變速的風力發電系統之特性,並可藉此控制發電機輸出實功功率及虛功功率,因此採用合適的激磁控制策略是雙饋式感應發電機能夠發揮其良好的調節性能、操作的靈活性及可靠性的關鍵。而對於雙饋式感應發電機之磁場導向控制策略目前已有初步的理論分析與實驗證明,現有技術多半需要轉速感測器。本文探討合適的無感測器理論應用於雙饋式感應發電系統,達成相近系統控制效能之目標下,減少轉速感測器成本支出。
本論文將以雙饋式感應發電機的向量控制為基礎,探討相關無感測型向量控制,貢獻有下列三點:
1. 建構雙饋式感應發電機的基本模型架構以及介紹定子磁交鏈之電壓與電流模型,並推導出廣義磁交鏈之相互關係,及建構雙饋式感應發電機之定子磁場導向控制模擬架構,為無感測型控制器理論之模型奠定基礎。
2. 深入分析在定子磁場導向控制下,全階磁通估測型無感測器理論分析與詳細的推導,接著介紹於靜止座標系下之參考模型適應性系統之降階估測法,最後模擬其兩種不同無感測器之結果與實測波形,探討其優缺點。
3. 發展一套2.2kW三相6極的雙饋式感應發電機系之xPC即時控制發展平台,以驗證本論文控制理論的正確性。
In recent years, doubly-fed induction generators (DFIGs) has become one of the major type of variable-speed fixed-frequency generators for large-scale wind farm applications. Some elementary sensor-based flux-oriented control strategies have been successfully implemented in current wind power industry practice. Similar to technology developments in conventional fixed-speed induction generator, sensorless control may be a new issue to further reduce sensor cost and provide similar satisfactory transient performance of sensor-based control. The main theme of this thesis is to study sensorless control algorithms for DFIGs. Both grid-connected and stand-alone configurations will be addressed. The main contributions of this thesis can be summarized as follows:
Static characteristics of DFIGs and their operating capacity will be conducted first. Dynamical models in terms of both the voltage and current model on stator flux oriented control will be developed in the generalized flux-oriented scheme. And a laboratory real-time control 2.2 kW DFIG platform is developed. The system is constructed by Matlab/Simulink and xPC system. Finally two types of sensorless control, including the model reference adaptive system (MRAS) control and the full-order observer control , are studied. Detailed analysis are provided. Both software simulations and hardware experiments are conducted. Experimental works have been conducted to verify the effectiveness of the proposed control strategy. Comparion studies of both sensorless control laws are also discussed.
[1]
C. Schauder, “Adaptive speed identification for vector control of induction motors without rotational transducers,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1054-1061, Oct. 1992.
[2]
H. M. Kojabadi, L. Chang, and R. Doraiswami, “A MRAS-based adaptive pseudoreduces-order flux observer for sensorless induction motor drives,” IEEE Trans. Power Electron., vol. 20, no. 4, pp.930-938. Jun. 2005.
[3]
R. Cardenas, R. Pena, J. Proboste, G. Asher, and J. Clare, “MRAS observer for sensorless control of stand-alone doubly-fed induction generators,” IEEE Trans. Energy Conversion, vol. 20, no. 4, pp.710-718, Dec. 2005.
[4]
R. Cardenas, R. Pena, J. Clare, G. Asher, and J. Proboste, “MRAS observers for sensorless control of doubly-fed induction generators,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1075-1084, May. 2008.
[5]
R. Blasco-Giménez, G. Asher, M. Summer, and K. Bradley, “Dynamic performance limitations for MRAS based sensorless induction motor drives. Part 1: Stability analysis for the closed loop drive,” Proc. IEE—Elect. Power Applicat., vol. 143, pp. 113–122, Mar. 1996.
[6]
M.N. Marwali, A. Keyhani, “A comparative study of rotor flux based MRAS and back EMF based MRAS speed estimators for speed sensorless vector control of induction machines, in Proc. IEEE-IAS Annu. Meeting, pp. 160–166, 1997.
[7]
M. S. Carmeli, F. Castelli-Dezza, M. Iacchetti, and R. Perini, “Effects of mismatched parameters in MRAS sensorless doubly fed induction machine drives,” IEEE Trans. Ind. Electron., 2010.
[8]
G. Yang and T. H. Chin, “Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive,” IEEE Trans. Ind. Appl., vol. 29, no. 4, pp. 820-825, Jul./Aug. 1993.
[9]
H. Kubota, K. Matsuse, and T. Nakano, “DSP-based speed adaptive flux observer of induction motor, ” IEEE Trans. Ind. Electron. ,vol. 29, no. 2, pp. 344-348, Mar./Apr. 1993.
[10]
M. Hinkkanen, “Analysis and design of full-order flux observers for sensorless induction motors,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1033–1040, Oct. 2004.
[11]
S. Yang and V. Ajjarapu, “Sensorless control of the doubly-fed induction generator for wind energy generations using a speed-adaptive full-order flux observer,” Twenty-Fourth Annual IEEE, APEC , pp. 1951-1957, 2009.
[12]
Y. N. Lin and C. L. Chen, “Adaptive pseudoreduced-order flux observer for speed sensorless field oriented control of IM,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 1042–1045, Oct. 1999.
[13]
Y.-R. Kim, S.-K. Sul, and M.-H. Park, “Speed sensorless vector control of an induction motor using an extended Kalman filter,” in Conf. Rec. IEEE-IAS Annu. Meeting, pp. 594–599, 1992.
[14]
M. S. N. Said, M. E. H. Benbouzid, “Induction Motors Direct Field Oriented Control with Robust On-Line Tuning of Rotor Resistance,” IEEE Trans. Energy Conversion, vol. 14, pp.1038-1042, Dec. 1999.
[15]
D. Telford, M. W. Dunnigan, B. W. Williams, “On-line identification of induction machine electrical parameters for vector control loop tunning,” IEEE Trans. Ind. Electron., vol. 50, pp.253-261, Apr. 2003.
[16]
Akhmatov V., Induction generators for wind power, London, UK: Multi-Science Publishing Company; ISBN: 0906522404.
[17]
A. G. Abo-Khalil, D. C. Lee and S. H. Lee, “Grid connection of doubly-fed induction generators in wind energy conversion system”, IPEMC, Shanghai, vol. 3, 2006, pp. 1487-1491.
[18]
Ahmet M. Hava, Russel J. Kerkman, and Thomas A. Lipo, “Simple Analytical and Graphical Methods for Carrier-Based PWM-VSI Drives,” IEEE Trans. Power Electron., VOL. 14, NO. 1, Jan. 1999.
[19]
C. C. Chu, C. C. Hung, Y. Z. Lin, and Z. J. Guey, “Universal field-oriented rotor-side controllers for doubly-fed induction generators, ” Proceedings of International Conference on PEDS, pp. 342-347, 2009.
[20]
B. Hopfensperger, D. J. Atkinson and R. A. Lakin, “Stator-flux oriented control of a doubly-fed induction machine: with and without position encoder”, Proc. IEE Electr. Power Appl., Vol. 147, No. 4, pp. 241-250, 2000.
[21]
G Yuan, Y. Li, J. Chai, and X. Jiang, “A novel position sensor-less control scheme of doubly fed induction wind generator based on MRAS method,” IEEE in PESC. pp. 2723-2727, 2008.
[22]
T. Ohtani, N. Takada, and K. Tanaka, “Vector control of induction motor without shaft encoder,” IEEE Trans. Ind. Appl., Vol. 28, No.1, pp. 157-165, 1992.
[23]
J. I. Ha and S. K. Sul, “Sensorless Field Orientation Control of an Induction Machine by High Frequency Signal Injection,” IEEE Trans. Ind. Appl., Vol. 35, No. 1, pp. 45–51, 1999.
[24]
L. Xu and W. Cheng, “Torque and reactive power control of a doubly fed induction machine by position sensorless scheme,” IEEE Trans. Ind. Appl., vol. 31, no. 3, pp. 636-641, May, 1995.
[25]
R. Datta and V. T. Ranganathan, “A simple position sensorless algorithm for rotor side field oriented control of would rotor induction machine,” IEEE Trans. Ind. Electron., vol. 48, no. 4, pp. 786-793, Aug. 2001.
[26]
M. Comanescu, “An induction-motor speed estimator based on integral sliding-mode current control,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3414–3423, Sep. 2009.
[27]
T. Lund, P. Sorensen, and J. Eek, “Reactive power capability of a wind turbine with doubly fed induction generator,” Wind Energy, vol. 10, pp. 379–394, Apr. 2007.
[28]
The MathWorks, Inc., “xPC Target – User’s Guide; Version 2”, Natick, 2002.
[29]
M. Aktarujjaman, M.A. Kashem, M. Negnevitsky, and G. Ledwich, “Black start with DFIG based distributed generation after major emergencies,” International Conference on PEDES, pp. 1-6, 2006.
[30]
M. El Moursi and C. Abbey, “A secondary voltage control strategy for transmission level interconnection of wind generation,” IEEE Trans. Power Electron., vol. 23, pp. 1178-1190, 2008.
[31]
M. Kayikc and J. V. Milanovi’, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389–396, Jun. 2007.
[32]
洪嘉駿,雙饋式感應發電機轉子側電力轉換器控制技術開發與實現,國立清華大學碩士論文,2008年。
[33]
B. Han and B. Bae, “Novel phase-locked loop using adaptive linear
combiner,” IEEE Trans. Power Del., vol. 21, no. 1, pp. 513-514, Jan, 2006.
[34]
F. Z. Peng, T. Fukao, “Robust Speed identification for speed-sensorless vector control of induction motors,” IEEE Trans. Ind. Electron., vol. 30, no. 5, pp.1234–1240, Oct. 1994.