研究生: |
杜孟哲 Tu, Meng-Che |
---|---|
論文名稱: |
一種可偵測人類血清白蛋白之光學式生物感測器 An Optical Biosensor for Human Serum Albumin Detection |
指導教授: |
游萃蓉
Yew, Tri-Rung |
口試委員: |
張晃猷
Chang, Hwan-You 彭慧玲 Peng, Hwei-Ling |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 人類血清白蛋白 、生物感測器 、光二極體 、量子點 |
外文關鍵詞: | Human serum albumin, Biosensor, Photodiode, Quantum dot |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究利用簡單且體積小的光學裝置,並以光學機制作為量測人類血清白蛋白(human serum albumin, HSA)之生物感測器。
在本研究中之生物感測器製備方式,是將玻璃洗淨後,經 3-aminopropyltriethoxysilane (APTES) 或1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-Hydroxysuccinimide (NHS)改質玻璃表面,使玻璃表面具有生物相容性後,而後依序接合上人類血清白蛋白抗體 (anti-HSA, AHSA)、小牛血清蛋白阻斷(bovine serum albumin, BSA),及不同濃度之HSA,最後修飾上具 655 nm發光波長的硒化鎘(CdSe) / 硫化鋅(ZnS)量子點(QD),吹乾後,再以405 nm雷射激發量子點,使之發出655 nm螢光並以感光二極體(photodiode)量取接收光量後產生之電流,藉此作為人HSA濃度之定量檢測。
在以感光二極體擷取 QDs 所發出螢光,進行HSA生物感測器定量分析上,乃利用半導體參數分析儀(semiconductor parameter analyzer),在直流電下測量由不同濃度之HSA與其接合之QDs所貢獻之電流變化量,來定量分析HSA之濃度。結果顯示當HSA的濃度越高,所產生的光電流也就越大,並且在2x10-4 mg/ml到2x10-1 mg/ml之間呈線性關係,其HSA偵測極限為3.2x10-5 mg/ml。
本研究利用光學機制,藉由量測接合HSA及QDs後所發出之螢光強度的改變,定量HSA濃度,並成功驗證此機制之可行性,跟傳統螢光式的光學生物感測器相比,本研究獨特之處在於此感測器的光源為二極體雷射,而光偵測器為感光二極體,兩者皆為體積小、低成本的電子元件,並可搭配透鏡與濾鏡,組成簡單且攜帶方便的光學系統,此簡易的光學系統具有易整合於生物晶片、分析結果可即時輸出、低成本等優點,對蛋白質檢測上有極大應用潛力。
In this study, an optical biosensor for human serum albumin (HSA) detection was demonstrated utilizing a simple and small volume optical system.
For the fabrication process of the optical biosensor, the glass sensing surface was modified by 3-aminopropyltriethoxysilane (APTES) or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) / N-Hydroxysuccinimide (NHS) to improve the biocompatibility. Following that, the sensing surface was modified with anti-human serum albumin (AHSA), blocked by bovine serum albumin (BSA), conjugated with targeted HSA, and finally bonded with AHSA-modified quantum dots (emission wavelength : 655 nm) for HSA detection after N2 drying.
The photocurrent contributed by various concentrations of HSA was measured and quantified by semiconductor parameter analyzer under DC condition in this work. Results showed that the photocurrent increased linearly as the HSA conjugation increased from 2x10-4 mg/ml to 2x10-1 mg/ml, with a detection limit of 3.2□10-5 mg/ml.
In summary, this study has successfully demonstrated the feasibility of utilizing optical mechanism (by measuring the photocurrent change of photodetector induced by fluorescence intensity change before and after HSA, and QDs conjugating) to quantify human serum albumin (HSA) concentration. Compared to the traditional fluorescence biosensors, both diode laser light source and photodetector were low-cost and small-volume electronics in this work. This portable, simple optical system consisted of lens, filter, diode laser, and photodetector, exhibiting advantages of ease to be integrated with biochips, timely output, and low cost, that can be used for future protein detection.
[1] L. C. Clark, Jr., and C. Lyons, "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery.", Ann. NY. Acad. Sci., 1965, 102(1), 29-45
[2] J. H. T. Luong, K. B. Male, and J. D. Glennon, "Biosensor Technology: Technology Push versus Market Pull", Biotechnol. Adv., 2008, 26, 492-500
[3] S. R. Khetani, and S. N. Bhatia, "Microscale Culture of Human Liver Cells for Drug Development", Nat. Biotechnol., 2008, 26(1), 120-126
[4] D. C. Rockeyl, and D. M. Bissell, "Noninvasive Measures of Liver Fibrosis", Hepatology, 2006, 43(2), S113-S120
[5] I. Moser, G. Jobst, P. Svasek, M. Varahram, and G. Urban, "Rapid Liver Enzyme Assay with Miniaturized Liquid Handling System Comprising Thin Film Biosensor Array", Sensor Actuat. B, 1997, 44, 377-380
[6] S. Babu, S. M., L. Zubkov, S. Murthy, and E. Papazoglou, "A PMMA microcapillary quantum dot linked immunosorbent assay (QLISA)." Biosens. Bioelectron., 2009, 24, 3467-3474
[7] J. Li, C. Xu, Z. Zhang, Y. Wang, H. Peng, Z. Lu, and M. Chan. "A DNA-detection platform with integrated photodiodes on a silicon chip.", Sensor Actuators B, 2009, 106(1): 378-382
[8] Y. C. Lu, Y. S. C., Y. Y. Chen, A. C. Shu, H. Y. Hsu, H. Y. Chang, and T. R. Yew, "Bacteria detection utilizing electrical conductivity.", Biosens. Bioelectron., 2008, 23, 1856-1861
[9] M. Vidal, M. P., S. Santos, T. Tavares, J. Hossfeld, C. Preininger, and A. Oliva, "Fluorescence IgG immunosensor based on a micro flow cell containing controlled pore glass as immobilisation support.", Analyst, 2000, 125: 1387-1391
[10] C. H. Yeh, W. T. C., H. P. Lin, T. C. Chang, and Y. C. Lin, "A newly developed immunoassay method based on optical measurement for Protein A detection", Talanta, 2010, 83, 55-60
[11] C. Siegmann-Thoss, R. Renneberg, J. F. C. Glatz, and F. Spener, " Surface functionalization of poly(epsilon-caprolactone) improves its biocompatibility as scaffold material for bioartificial vessel prostheses ", Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2011, 98B(1), 89-100
[12] M.L. Mena, P. Yáñez-Sedeño and J.M. Pingarrón, "A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes.", Anal. Biochem., 2005, 336(1), 20-27
[13] T. M. O’Regan, M. Pravda, C. K. O’Sullivan, and G. G. Guilbault, "Development of a disposable immunosensor for the detection of human heart fatty-acid binding protein in human whole blood using screen-printed carbon electrodes. ", Talanta, 2002, 57, 501–510
[14] T. M. O’Regan, L. J. O’Riordan, M. Pravda, C. K. O’Sullivan, and G. G. Guilbault, "Direct detection of myoglobin in whole blood using a disposable amperometric immunosensor. ", Anal. Chim. Acta, 2002, 460, 141–150
[15] D. R. Th_evenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical Biosensors: Recommended Definitions and Classification. ",Pure Appl. Chem., 1999, 71(12), 2333–2348
[16] C. Ercole, M. D. Gallo, M. Pantalone, S. Santucci, L. Mosiello, C. Laconi, and A. Lepidi, "A biosensor for Escherichia coli based on a potentiometric alternating biosensing (PAB) transducer. ", Sens. Actuators, B, 2002, 83, 48–52
[17] G. A. J. Besselink, R. B. M. Schasfort, and P. Bergveld, "Modification of ISFETs with a monolayer of latex beads for specific detection of proteins. ", Biosens. Bioelectron., 2003, 18, 1109–1114
[18] M. Kamahori, Y. Ishige, and M. Shimoda, "A novel enzyme immunoassay based on potentiometric measurement of molecular adsorption events by an extended-gate field-effect transistor sensor.", Biosens. Bioelectron., 2007, 22, 3080–3085
[19] A. G. Gehring, D. L. Patterson, and S. I. Tu, "Use of a light-addressable potentiometric sensor for the detection of Escherichia coli O157:H7. ", Anal. Biochem., 1998, 258, 293–298
[20] M. Billah, H. C. W. Hays, and P. A. Millner, "Development of a myoglobin impedimetric immunosensor based on mixed self-assembled monolayer onto gold.", Microchim. Acta, 2008, 160, 447–454
[21] X. Chen, Y. Wang, J. Zhou, W. Yan, X. Li and J. J. Zhu, "Electrochemical DNA Biosensor Based on Nanoporous Gold Electrode and Multifunctional Encoded DNA−Au Bio Bar Codes. ", Anal. Chem., 2008, 80, 2133–2140
[22] S. Viswanathan, H. Radecka and J. Radecki, "Electrochemical biosensors for food analysis. ", Monatsh. Chem., 2009, 140, 891–899
[23] A. L. Newman, K. W. Hunter, W. D. Stanbro, "The capacitive affinity sensor: a new biosensor, in: Proceedings of the Second International Meeting on Chemical Sensors.", Bordeaux 1986,
7–10, 596–598
[24] A. Guiseppi-Eliea, L. Kocha, S. H. Finley, and G. E. Wnek, "The effect of temperature on the impedimetric response of bioreceptor hosting hydrogels. ", Biosens. Bioelectron., 2011, 26, 2275-2280
[25] A. G. E. Saum, R. H. Cumming, and F. J. Rowell, "Detection of protease activity in the wetted surface of gelatin-coated electrodes in air by AC impedance spectroscopy.", Biosens. Bioelectron., 2000, 15, 305-313
[26] F. Darain, P. Yager, K. L. Gan and S. C. Tjin, "On-chip detection of myoglobin based on fluorescence.", Biosens. Bioelectron., 2009, 24, 1744–1750
[27] M. Yang, Y. Kostov, H. A. Bruck and A. Rasooly, "Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. ", Anal. Chem., 2008, 80, 8532–8537
[28] H. Huang, X. L. Zheng, J. S. Zheng, J. Pan and Y. P. Pu, "Rapid analysis of alpha-fetoprotein by chemiluminescence microfluidic immunoassay system based on super-paramagnetic microbeads.", Biomed. Microdevices, 2009, 11, 213–216
[29] J. Lind, G. Merenyi, T. E. Eriksen, "Chemiluminescence mechanism of cyclic hydrazides such as luminol in aqueous solutions. ", J. Am. Chem. Soc., 1983, 105, 7655-7661
[30] G. Merenyi, J. Lind, T. E. Eriksen,. " Luminol chemiluminescence: chemistry, excitation, emitter. ", J. Biolumin. Chemilumin. 1990, 5, 53-56
[31] T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser and J. L. Elkind, "Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor. ", Sens. Actuators, B, 2003, 91, 266–274
[32] B. N. Feltis, B. A. Sexton, F. L. Glenn, M. J. Best, M. Wilkins and T. J. Davis, "A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. ", Biosens. Bioelectron., 2008, 23, 1131–1136
[33] J. Ziegler, M. Zimmermann, P. Hunziker and E. Delamarche, "High-Performance Immunoassays Based on Through-Stencil Patterned Antibodies and Capillary Systems. ", Anal. Chem., 2008, 80, 1763–1769.
[34] W. J. Parak, T. Pellegrino and C. Plank, " Labelling of cells with quantum dots. ", Nanotechnology 2005, 16, R9-R25.
[35] A. Morarka, S. Agrawal, S. Kale, A. Kale, S. Ogale, K. Paknikar, and D. Bodas, "Quantum dot based immunosensor using 3D circular microchannels fabricated in PDMS. ", Biosens. Bioelectron., .2011, 26, 3050-3053
[36] K. Kerman, T. Endo, M. Tsukamoto, M. Chikae, Y. Takamura, and E. Tamiya, "Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy.", Talanta, 2007, 71, 1494–1499
[37] J. -F. Magnaval, R. Fabre, P. Maurières, J. -P. Charlet and B. Larrard. “Application of the Western blotting procedure for the immunodiagnosis of human toxocariasis”, Biomedical and Life Sciences, 1991, 77, 697-702
[38] K. Y. Park, Y. S. Sohn, C. K. Kim, H. S. Kim, Y. S. Bae, and S.Y. Choi, “Development of FET-Type Albumin Sensor for Diagnosing Nephritis”, Biosens. Bioelectron., 2008, 23, 1904-1907
[39] C. J. Huang, C. C. Lu, T. Y. Lin, T. C. Chou, and G. B. Lee, “An Electrochemical Albumin-Sensing System Utilizing Microfluidic Technology”, J. Micromech. Microeng., 2007, 17, 835–842
[40] M. C. Chuang, C. C. Liu, and M. C. Yang, “An Electrochemical Tyrosinase-Immobilized Biosensor for Albumin—Toward a Potential Total Protein Measurement.”, Sensor Actuat. B, 2006, 114, 357–363
[41] S. B. Tolani, M. Craig, R. K. DeLong, K. Ghosh, and A. K. Wanekaya, “Towards Biosensors Based on Conducting Polymer Nanowires”, Anal. Bioanal. Chem., 2009, 393, 1225–1231
[42] B. Wongkittisuksa, C. Limsakula, P. Kanatharana, W. Limbut, P. Asawatreratanakul, S. Dawan, S. Loyprasert, and P. Thavarungkul, " Development and application of a real-time capacitive sensor. ", Biosens. Bioelectron., .2011, 26, 2466-2472
[43] Y. H. Ahn, J. S. Lee, and Y. T. Chang, “Selective Human Serum Albumin Sensor from the Screening of a Fluorescent Rosamine Library.”, J. Comb. Chem., 2008, 10, 376-380
[44] M. De, S. Rana, H. Akpinar, O. R. Miranda, R. R. Arvizo, U. H. F. Bunz, and V. M. Rotello, “Sensing of Proteins in Human Serum Using Conjugates of Nanoparticles and Green Fluorescent Protein”, Nat. Chem., 2009, 1, 461-465
[45] B.V.Chikkaveeraiah, V. Mani, V. Patel, S. Gutkind, J.F.Rusling, “Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum” Biosens. Bioelectron., 2011, 26, 4477-4483