簡易檢索 / 詳目顯示

研究生: 戴明澤
Ming-Tse Dai
論文名稱: 奈米接觸印刷微影技術的研究
The study of the Nanocontact printing lithography
指導教授: 葉鳳生
Fon-Shan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 奈米接觸壓印
外文關鍵詞: Nanocontact, printing, HSQ
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著ULSI技術蓬勃發展積體電路所要求之密集度愈來愈高,根據2003年ITRS(International Technology Roadmap For Semiconductors Conference )的預測,元件的1/2 Pitch已在2004年達到90 nm,且在2007年達到65 nm。其中奈米壓印微影技術有其方便性及簡易性,只要製作一個印刷模仁(mold),快速且多次印刷或圖案轉移(pattern transfer)即可達成。
    本論文分成三個部分:首先研究奈米接觸印刷模仁的製作,成功利用低劑量電子束直寫技術及熱烤技術,在HSQ上定義出我們想要圖案,再利用濕式蝕刻方法,蝕刻出模仁。第二部分為研究ink的配製為主題,以不同比例調配而成。第三個部分研究奈米接觸印刷實驗為主題,以尋求最佳奈米接觸印刷轉印的製程條件。
    首先製作了HSQ模仁來配合接觸印刷轉印,其MASK分別為線寬80nm、100nm、150nm、200nm,點寬80nm、100nm、150nm、200nm為line : space=1 : 10之圖形,先調配HSQ : MIBK=2:1,再塗佈HSQ並預烤分別為90oC 3mins及120oC 3mins,接著進入e-beam依所設計的MASK,曝出想要之圖案,最後使用TMAH以不同蝕刻濃度及蝕刻時間,得到所要的線寬約在40nm-190nm左右。
    奈米接觸印刷部分,使用兩種不同的ink來翻壓,其一為poly-l-lysine混合Rhodamime,成功激發出波長在670nm左右的紅光。其二為aminosilane混合CdSe/ZnS QDs,成功激發出波長在571nm左右的橘光。使用兩種不同的ink,來控制厚度、壓力及時間,並使用螢光顯微鏡觀察,均成功轉印出模仁上相同之圖形。


    As progress of IC fabrication technology, the device size was scaling down gradually. According to the prediction of ITRS (International Technology Roadmap For Semiconductors Conference ) of 2003, 1/2 Pitch of the component has reached 90 nm in 2004, and will reach 65 nm in 2007. Nanoimprint is the most promising ways among many lithography technologies. It costs less and reduces the process cycle time.
    □□his thesis is divided into three parts: First, we study the fabrication of mold of nanocontact printing, and success in defining the pattern on HSQ by the technology of the e-beam lithography of low dose and prebake. Then, we etch the mold by wet etching method. Second, we focus on the preparation of ink. At last, we find out the optimum
    condition of process in the technology of nanocontact printing.
    □□SQ molds with different wires width region from 80nm~200nm, and different dots size region from 80nm~200nm were designed , The ratio line width and space is 1:10. The HSQ were mixed with MIBK with condition is HSQ:MIBK= 2 : 1. After spinning, the HSQ was baked at 90oC 3mins or at 120oC 3mins. The e-beam lithography with dose 40~400uC/cm2 were performed on the above treated HSQ. Finally, use TMAH to etch HSQ and HSQ molds with 40nm-190nm were fabricated, SEM picture showed the aspect ratio of the mold.
    □□n the part of nanocontact printing, we use two kinds of different inks, one of is poly-l-lysine mixed Rhodamime. Another is aminosilane mixed CdSe/ZnS QDs. By control thickness, pressure and time of both two inks. We succeed in transfering the pattern on substrate HSQ. The fluorescence microscope, SEM, and AFM were then taken to observe the pattern transfer.

    第一章 緒論.............................1 第二章 塑造物HSQ及ink材料.................5 2-1 HSQ材料結構....................5 2-2 ink材料........................6 2-3 螢光材料.......................7 第三章 儀器與量測原理.....................9 3-1 電子束曝光系統(e-beam) ........9 3-1-1 影響解析度的因素..........12 3-1-1-1 電子束散射效應.....................12 3-1-1-2 充電效應...........................14 3-2 掃描式電子顯微鏡分析(SEM)......15 3-3 原子力顯微鏡(AFM)..............17 3-4 螢光顯微鏡.....................20 3-5 壓印機台.......................22 第四章 實驗邧~製作.......................23 4-1 模仁準備.......................23 4-1-1 HSQ準備....................23 4-1-2 模仁製作...................23 4-2 基板試片準備...................31 4-3 ink製備及硯台製作..............34 4-3-1 poly-l-lysine製備..........34 4-3-2 aminosilane 製備...........34 4-3-3 硯台製作...................36 4-4 奈米接觸印刷實驗...............37 4-4-1 poly-l-lysine材料壓印製程.37 4-4-2 aminosilane材料壓印製程...38 第五章 實驗結果與討論.....................39 5-1 模仁結構.......................39 5-2 模仁粘印效果...................63 5-3 奈米接觸壓印結果...............63 5-3-1 螢光顯微鏡................63 5-3-1-1 poly-l-lysine......64 5-3-1-2 aminosilane........74 5-3-2 掃描式電子顯微鏡(SEM).....77 5-4 原子力顯微鏡(AFM).............80 第六章 結論...............................83 Reference..................................85

    [1] ITRS, International Technology Roadmap for semiconductors Conference, Hsinchu, Taiwan, 2003.
    [2] T.S. Huck et al., Current Opinion in Solid State and Materials Science, Polymers in nanotechnology, 6, 2002,3-8.
    [3] Y. Xia, X.M. Zhao and G.M. Whitesides, Microelectronic Engineering, PP. 255-268, 1996
    [4] T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, J. Vac. Sci. Technol. B, 18, 6(2000)
    [5] T. Bailey, B. Smith, B. J. Choi, M. Colburn, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, J. Vac. Sci. Technol. B, 19, 6(2001)
    [6] C.C. Yang、W.C. Chen, J. Mater. Chem., 12, 1138-1141(2002)
    [7] H.C. Liou, J. Pretzer, Thin Solid Films, 335, 186-191(1998)
    [8] Stephen Y. Chou, Peter R. Krauss, Wei Zhang, Lingjie Guo, and Lei Zhuang, J. Vac. Sci. Technol. B 15, 6 (1997).
    [9] Mingtao Li, Jian Wang, Lei Zhuang, and Stephen Y. Chou, Appl. Phys. Lett., 76, 6(2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE