簡易檢索 / 詳目顯示

研究生: 甘迪潘
GANDEEPAN
論文名稱: Palladium-Catalyzed C-H Bond Functionalization and Iron-Catalyzed Addition and Annulation Reactions
鈀金屬催化碳—氫鍵活化及鐵金屬催化加成及環化反應之研究
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 劉瑞雄
Liu, Rai-Shung
蔡易州
Tsai, Yi-Chou
劉緒宗
Liu, Shiuh-Tzung
謝仁傑
Hsieh, Jen-Chieh
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 375
中文關鍵詞: 碳—氫鍵活化加成反應環化反應
外文關鍵詞: PALLADIUM, IRON, C-H ACTIVATION, ADDITION REACTION, ANNULATION REACTION
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Transition metal-catalyzed direct transformations of inactivated CH bonds into various functional groups have emerged as a powerful method in organic synthesis. This methodology is fascinating for the chemical and pharmaceutical industries, because it can significantly simplify and shorten the synthetic route and also allow the utilization of less expensive, more readily available, and environmentally benign starting materials. Use of palladium complexes for CH bond functionalization to deduce new synthetic procedures which are more environmentally benign, atom efficient and economically viable than the existing methods was the motivation behind to the current works. With this regards, this thesis describes five new transformations (Chapter 1-5) for CC bond formation through CH bond activation using palladium catalyst.
    Iron is 4th most abundant metal on earth and has been increasingly explored in modern catalysis to discover its unique and novel reactivity towards carbon–carbon and carbon–heteroatom bond formation. Owing to its inexpensive and environmentally friendly characteristics, considerable effort has been directed towards iron catalysis and as a result a series of novel iron-catalyzed organic transformations have been developed. Use of such low-cost and non-toxic iron complexes as catalysts in new CC and and Cheteroatom bond formation is highly desirable. With this concern, we also developed three new methods to synthesize -chlorovinyl ketones, ,-alkynyl ketones and 2,4-substituted Quinolines using iron-catalyzed reaction system (Chapter 6-7).

     Chapter 1 decribes the synthesis of phenanthrone derivatives from sec-alkyl aryl ketones with aryl iodides using palladium catalyst. The catalytic reaction appears to proceed via a dual CH activation and enolate cyclization.

     Chapter 2 depicts the synthesis of fluorenones by Pd-catalyzed oxidative cyclization of diaryl ketones. This methodology had advantages using readily available diaryl ketone starting materials to produce variety of fluorenones. This simple method offers an alternative and complimentary way to other fluorenone synthesis.

     Chapter 3 demonstrates an effective palladium-catalyzed carboncarbon double bond assisted selective ortho CH olefination of arenes at room temperature using dioxygen as the oxidant. The reaction appears to be the first example employing an allylic alkenyl double bond as a directing group for CH activation.

     Chapter 4 deals about the synthesis of substituted naphthalenes via palladium catalyzed CH activation and annulation of allyl arenes with alkynes. This reaction proceed through the -coordination of Pd(II) to the allylic carboncarbon double bond and ortho selective CH bond activation. The reaction adds an advantage to use environmentally friendly oxygen as a terminal oxidant.

     Chapter 5 showed an efficient and convenient method for the synthesis of symmetrically substituted 1,4-diaryl-1,3-butadienes by palladium-catalyzed oxidative dimerization of vinyl arenes. The reaction proceeds with broad substrate scope and excellent stereo selectivity.

     Chapter 6 elaborates the development of a very mild and convenient iron-catalyzed addition of acid chlorides to terminal alkynes to give the corresponding -chloroalkenyl ketones in very good yields with excellent regio- and stereoselectivity. The present iron-catalyzed addition reaction is successfully extended to alkynylsilanes to give alkynyl ketones.

     Chapter 7 reveals the synthesis of quinoline derivatives from iron catalyzed tandem reaction of aldimines with styrenes. This process can provide diverse range of quinoline derivatives in good to excellent yields from simple starting materials. The method has advantages of broad substrate scope, simple operation, mild reaction condition, and high effectiveness from non toxic and inexpensive iron catalyst. This reaction also extended to one-pot tandem three-component reaction of aldehydes, styrenes and amines to synthesis of quinoline derivatives.


    Page ACKNOWLEDGEMENT v ABSTRACT vii LIST OF SCHEME x LIST OF TABLES xvi ABBREVIATIONS xviii LIST OF PUBLICATIONS xx CHAPTER 1 Synthesis of Phenanthrone Derivatives from sec-Alkyl Aryl Ketones and Arylhalides via a PalladiumCatalyzed Dual CH Bond Activation and Enolate Cyclization 1.1 Introduction 2 1.1.1 Introduction to CH Functionalization 2 1.1.2 Introduction to Present Work 4 1.2 Objective 10 1.3 Results and Discussion 11 1.3.1 Optimization of the Reaction 11 1.3.2 Scope of the Reaction for ortho-Arylation of Aryl Ketones 13 1.3.3 Synthesis of Phenanthrone Derivatives 15 1.4 Mechanistic Discussion 18 1.4.1 Proposed Mechanism 18 1.4.2 Evidence for the Proposed Mechanism 19 1.5 Conclusion 21 1.6 Experimental Section 21 1.7 Spectroscopic Data 25 1.8 References 35 CHAPTER 2 Synthesis of Fluorenones from Diaryl Ketones via PdCatalyzed Oxidative Double CH Bond Activations 2.1 Introduction 39 2.1.1 Oxidative CH Coupling Reaction 39 2.1.2 Intramolecular Oxidative CH Coupling Reactions 39 2.1.3 Introduction to Fluorenones 42 2.1.4 Classical Methods for the Synthesis of Fluorenones 43 2.1.5 Transition-Metal-Catalyzed Synthesis of Fluorenones 44 2.2 Objective 47 2.3 Results and Discussion 48 2.3.1 Optimization Study for Suitable Solvent 48 2.3.2 Optimization Study for Suitable Oxidant 49 2.3.3 Scope of the Reaction 50 2.4 Mechanistic Discussion 54 2.5 Conclusion 54 2.6 Experimental Section 55 2.7 Spectroscopic Data 55 2.8 References 61 CHAPTER 3 Allylic Carbon Carbon Double Bond Directed PdCatalyzed Oxidative ortho-Olefination of Arenes 3.1 Introduction 65 3.1.1 MizorokiHeck Reaction 66 3.1.2 FujiwaraMoritani Reaction 67 3.1.3 Introduction to Present Work 68 3.2. Objective 76 3.3 Results and Discussion 76 3.3.1 Initial Investigations with Styrene 76 3.3.2 Optimization Studies for the Pd-Catalyzed ortho Alkenation of Allyl Arens 77 3.3.3 Scope of the Olefins in Pd-Catalyzed Alkenation Reaction 80 3.3.4 Scope of Allyl Arene Derivatives 83 3.4 Mechanistic Discussion 86 3.4.1 Competition study of substituted allyl arenes 86 3.4.2 Kinetic Isotope Studies 87 3.4.3 Proposed Mechanism 88 3.5 Conclusion 89 3.6 Experimental Section 90 3.7 Spectroscopic Data 96 3.8 References 114 CHAPTER 4 Synthesis of Highly Substituted Naphthalenes via PdCatalyzed ortho-CH Activation and Annulation of Allyl Arenes with Alkynes 4.1 Introduction 120 4.1.1 Introduction to CH Activation and Annulation Reactions 120 4.1.2 Palladium-Catalyzed to CH Activation and Annulation Reactions 122 4.1.3 -Chelation-Assisted CH Activation 125 4.2 Objective 127 4.3 Results and Discussion 128 4.3.1 Reaction Optimization 128 4.3.2 Scope of Naphthalene formation with Symmetrical Alkynes 130 4.3.3 Scope and Selectivity of Unsymmetrical Alkynes 133 4.4 Mechanistic Discussion 135 4.4.1 Proposed Mechanism 135 4.5 Conclusion 136 4.6 Experimental Section 136 4.7 Spectroscopic Data 138 4.8 References 148 CHAPTER 5 PalladiumCatalyzed Oxidative Heck-Type Dimerization of Styrenes: An Efficient Method to Synthesis of 1,3Dienes 5.1 Introduction 153 5.1.1 Classical Routes for synthesis of Dienes 153 5.1.2 Oxidative-Coupling Routes to Synthesis of Dienes 154 5.1.3 Homodimerization of Vinyl Arenes 156 5.2 Objective 157 5.3 Results and Discussion 157 5.3.1 Reaction Optimization 157 5.3.2 Scope of the Reaction 159 5.4 Mechanistic Discussion 163 5.5 Conclusion 164 5.6 Experimental Section 165 5.7 Spectroscopic Data 165 5.8 References 172 CHAPTER 6 Iron-Catalyzed Synthesis of -Chlorovinyl and ,-Alkynyl Ketones from Terminal and Silyl Alkynes with Acid Chlorides 6.1 Introduction 177 6.1.1 Introduction to Addition Reactions 177 6.1.2 Addition of Acid Chlorides to Alkynes 177 6.2 Objective 180 6.3 Results and Discussion 181 6.3.1 Reaction Optimization for Addition of Acid Chlorides to Alkynes 181 6.3.2 Scope of FeCl3-Catalyzed Addition of Acid Chlorides to Terminal Alkynes 183 6.3.3 Scope of Fe-Catalyzed Chloroacylation Reaction to Internal Alkynes 185 6.3.4 FeCl3-Catalyzed Reaction of Acyl Chlorides with Alkynylsilanes 188 6.3.5 Scope of FeCl3-Catalyzed ,-Alkynyl Ketones Synthesis 190 6.4 Mechanistic Discussion 193 6.4.1 Proposed Mechanism for Addition of Acid Chlorides to Terminal Alkynes 193 6.4.2 Proposed Mechanism for Addition of Acid Chloride to Internal Alkynes 194 6.5 Conclusion 196 6.6 Experimental Section 196 6.7 Spectroscopic Data 197 6.8 References 220 CHAPTER 7 An Easy Access of Quinolines via Fe(III)Catalyzed ThreeComponent Reaction of Aldehydes, Amines and Styrenes 7.1 Introduction 225 7.1.1 Introduction to Quinolines 225 7.1.2 Synthesis of Quinolines: Traditional Methods 226 7.1.3 Synthesis of Quinolines: Metal Catalyzed Reactions 227 7.2 Objective 231 7.3 Results and Discussion 231 7.3.1 Reaction Optimization for Quinoline formation 231 7.3.2 Scope of Quinoline Formation 234 7.3.3 Fe-Catalyzed Three-Component One-Pot Quinoline Synthesis 237 7.4 Mechanistic Discussion 238 7.5 Conclusion 239 7.6 Experimental Section 239 7.7 Spectroscopic Data 240 7.8 References 251 CRYSTAL DATA, 1H AND 13C NMR SPECTRA 254

    1. a) Negishi, E.; De Meijere, A. Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley-Interscience, New York, 2002. b) De Meijere A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions, Second Completely Revised and Enlarged Edition, Wiley-VCH, 2004. c) Ackermann, L. Modern Arylation Methods, Wiley-VCH, 2009. d) Corbet, J.-P.; Mignani, G. Chem. Rev., 2006, 106, 2651. e) Jana, R.; Pathak T. P.; Sigman, M. S. Chem. Rev., 2011, 111, 1417. f) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem., 2002, 219, 131. g) Hartwig, J. F. Angew. Chem., Int. Ed., 1998, 37, 2046. (h) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed., 2009, 48, 2656.
    2. Godula, K.; Sames. D. Science. 2006, 312, 67.
    3. a) Labinger, J. A.; Bercaw, J. E. Nature, 2002, 417, 507. b) Ackermann, L. Chem. Rev., 2011, 111, 1315.
    4. a) Trost, B. M. Science, 1991, 254, 1471. b) Trost. B. M. Angew. Chem., Int. Ed., 1995, 34, 259.
    5. a) Alberico, D.; Scott, M. E.; Lautens. M. Chem Rev, 2007, 107, 174. b) Lyons, T. W.; Sanford, M. S. Chem. Rev, 2010, 110, 1147.
    6. a) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. b) Daugulis, O.; Do, H. Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
    7. a) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330. b) Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657. c) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154. d) Ackermann, L. Org. Lett. 2005, 7, 3123. e) Oi, S.; Fukita, S.; Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y. Org. Lett. 2001, 3, 2579. f) Ackermann, L.; Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619. g) Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032. h) Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299. i) Pozgan, F.; Dixneuf, P. H. Adv. Synth. Catal. 2009, 351, 1737. j) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2010, 49, 6629.
    8. a) Oi, S.; Aizawa, E.; Ogino, Y.; Inoue, Y. J. Org. Chem. 2005, 70, 3113. b) H. –M. Guo, L. –L. Jiang, H. –Y. Niu, W. –H. Rao, L. Liang, R. Z. Mao, D-. Y. Li, G. –R. Qu. Org. Lett. 2011, 13, 2008. c) Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299. d) Ackermann, L.; Born, R.; Vicente, R. ChemSusChem 2009, 546. e) Ackermann, L.; Novák, P.; Vicente, R.; Pirovano, V.; Potukuchi, H. K. Synthesis 2010, 2245.
    9. a) Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046. b) Lazareva, A.; Daugulis, O. Org. Lett. 2006, 8, 5211.
    10. a) Kametani, Y.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron Lett. 2000, 41, 2655. b) D. Shabasho, O. Daugulis. Org. Lett. 2006, 8, 4947. c) M. Wasa, B. T. Worrell, J. –Q. Yu. Angew. Chem. Int. Ed. 2010, 49, 1275. d) F. Péron, C. Fossey, T. Cailly, F. Fabis. Org. Lett. 2012, 14, 1827.
    11. H. A. Chiong, Q. –N. Pham, O. Daugulis. J. Am. Chem. Soc. 2007, 129, 9879.
    12. a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1740. b) Kawamura, Y.; Satoh, T.; Miura, M.; Nomura, M. Chem. Lett. 1999, 961. c) Kawamura, Y.; Satoh, T.; Miura, M.; Nomura, M. Chem. Lett. 1998, 931. d) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42, 112. e) Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68, 8669. f) Oi, S.; Watanabe, S.-I.; Fukita, S.; Inoue, Y. Tetrahedron Lett. 2003, 44, 8665.
    13. a) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 123, 10407. b) Terao, Y.; Wakui, H.; Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 5236. c) Terao, Y.; Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2004, 69, 6942. d) Wakui, H.; Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2004, 126, 8658.
    14. a) Satoh, T.; Kametani, Y.; Terao, Y.; Miura, M.; Nomura, M. Tetrahedron Lett. 1999, 40, 5345. b) Satoh, T.; Miura, M.; Nomura, M. J. Organomet. Chem. 2002, 653, 151. c) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698. d) Kakiuchi, F.; Matsuura, Y.; Kan, S.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936.
    15. a) Gürbüz, N.; Özdemir, I.; Çetinkaya, B. Tetrahedron Lett. 2005, 46, 2273. b) Terao, Y.; Kametani, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron 2001, 57, 5967.
    16. a) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2008, 47, 9462. b) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Chem. Eur.J. 2010, 16, 1436.
    17. a) Oi, S.; Ogino, Y.; Fukita, S.; Inoue, Y. Org. Lett. 2002, 4, 1783. b) Ackermann, L. Org. Lett. 2005, 7, 3123. c) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2005, 7, 2229. d) Desai, L. V.; Hull, L. K.; Sanford, S. M. J. Am. Chem. Soc. 2004, 126, 9542. e) Desai, V.; Malik, H. A.; Sanford, S. M. Org. Lett. 2006, 8, 1141. f) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048. g) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc 2008, 130, 3304.
    18. a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. b) Lyons, T. W. Sanford, M. S. Chem. Rev. 2010, 110, 1147. c) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824.
    19. a) Lebrasseur, N.; Larrosa, I.; J. Am. Chem. Soc. 2008, 130, 2926. b) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. c) Chen, X.; Googhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634. d) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE