簡易檢索 / 詳目顯示

研究生: 孫志銘
Sun, Chih-Ming
論文名稱: 染料敏化太陽電池動態模式建立與電動車致冷晶片冷氣應用
Dynamic Modeling of Dye-Sensitized Solar Cells and Application for Thermoelectric Air Conditioners in Electric Vehicles
指導教授: 洪哲文
Hong, Che-Wun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 63
中文關鍵詞: 染料敏化太陽電池致冷晶片動態模式車輛冷氣
外文關鍵詞: Dye-Sensitized Solar Cells, Thermoelectric, Dynamic Model
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以太陽電池為主所組成之混成電力系統(hybrid power system)動態模式,供電給電動車致冷晶片冷氣系統,設計其電力能量管理策略與車室溫度之控制方法,並以建立的系統動態模式作不同條件下的性能探討。
    太陽電池部份使用的是染料敏化太陽能電池(Dye-Sensitized Solar Cell, DSSC),研究工作主要分兩大部分:首先以理論輔以分析其內部結構與發電機制以建立其等效動態模式部份;接著再對太陽電池進行不同操作條件下之交流阻抗實驗與結果分析,得到其內部重要參數,並討論當操作條件不同時各參數的變化趨勢。將基於元件結構與物理特性所得之結果及等效電路方法經Matlab/Simulink軟體建立其動態模型,再藉由與實驗的比較去檢驗模型之正確性。並且將所建立之子電力模型經由系統化整合,設計一套混合電力系統之控制與管理策略辦法。
    動態負載部份則以電動車冷氣系統作為應用實例。主要考量為車室中熱量絕大部分來自太陽所產生輻射能量,但輻射能量同時影響混成電力中太陽電池的供電能力,基於這樣的趨勢進一步的探討太陽能致冷的可行性。本論文以熱電致冷晶片(thermoelectric cooling chip)經由供電後產生致冷能力,再基於其結構與致冷原理的搭配與熱傳理論分析,建立出車室冷氣系統動態模式。最後將供電與負載模式結合,得到完整電動車致冷晶片冷氣系統之動態模式。
    本論文將討論各種不同極端操作狀況作動態性能分析,模擬評估出車室瞬時溫度、冷氣系統性能係數與混成電力各電源之供電狀況,進而推估實際應用於電動車冷氣系統之效能與可行性。


    摘要 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究方法 1.3 文獻回顧 第二章 染料敏化太陽電池模式建立 2.1 染料敏化太陽電池原理 2.2 實驗與分析方法 2.2.1. 電壓-電流特性實驗設備與架構 2.2.2. 交流阻抗分析實驗設備與架構 2.2.3. 交流阻抗分析原理 2.2.4. 等效電路 2.3 太陽電池性能參數 2.3.1. 光轉換效率 2.3.2. 開路電壓 2.3.3. 短路電流密度 2.3.4. 填充因子 2.3.5. 溫度 2.4 介面現象描述及其阻抗表現 2.4.1. 陰極部分: 2.4.2. 電解液: 2.4.3. 染料: 2.4.4. 陽極部分: 2.5 太陽電池等效電路模式建 第三章 電動車冷氣系統 3.1. 熱電致冷晶片(Thermoelectric Cooling Chip, TCC) 3.1.1. 熱電致冷晶片簡介 3.1.2. 熱電致冷晶片原理 3.1.3. 熱電致冷晶片模式建立 3.2. 熱電致冷晶片於電動車冷氣之應用 第四章 結果與討論 4.1實驗結果與模式建立 4.1.1. 染料敏化太陽電池部分 4.1.2. 致冷晶片部分 4.2 混成電力系統應用於車輛冷氣模擬結果 第五章 結論與未來工作建議 5.1. 結論 5.2. 未來工作建議 參考文獻 附錄 A. 太陽電池電荷傳輸模式描述

    [1] Reich ,N.H. , Alsema, E.A., Lof, R.W., Schropp R.E.I., Sinke W.C., Turkenburg, W.C. ,“Crystalline silicon cell performance at low light intensities”, Solar Energy Materials & Solar Cells, Vol. 93, p.p. 1471-1481, 2009
    [2] http://www.dyesol.com
    [3] O’Regan, B., Grätzel, M., “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, Vol. 353, p.p. 737-739, 1991
    [4] Nakade,S., Saito, Y., Kubo, W., Kitamura, T., Wada, Y., Yanagida, S., “Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells”, J. Phys. Chem. B, Vol. 107, p.p. 8607-8611, 2003
    [5] Wang, P., Zakeeruddin, S.M., Comte, P., Charvet, R., Baker, R. H., Grätzel, M., “Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals”, J. Phys. Chem. B, Vol.107, p.p. 14336-14341, 2003
    [6] Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., Durrant, J. R., “Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers”, J. AM. CHEM. SOC. Vol. 125, p .p. 475-482, 2003,
    [7] Hauch, A., Georg, A. “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochimica Acta , Vol. 46, p.p. 3457-3466, 2001
    [8] Usui, H., Matsui, H., Tanabe, N., Yanagida, S., “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes”, Journal of Photochemistry and Photobiology A, Vol. 164, p.p. 91-101, 2004
    [9] Asano, T., Kubo, T., Nishikitani, Y., “Electrochemical properties of dye-sensitized solar cells fabricated with PVDF-type polymeric solid electrolytes.”, Journal of Photochemistry and Photobiology A, Vol. 164, p.p. 111-115, 2004
    [10] Bisquert, J., Belmonte, G. G., Bogdanoff, P., Santiago, F. F., Ferriols, N. S., Pereira, E. C., “Doubling Exponent Models for the Analysis of Porous Film Electrods by Impedance. Relaxation of TiO2 Nanoporous in Aqueous Solution”, J. Phys. Chem. B, Vol. 104, p.p. 2287-2298, 2000
    [11] Bisquert, J., “Influence of the boundaries in the impedance of porous film electrode”, Phys. Chem. Chem. Phys., Vol. 2, p.p. 4185-4192, 2000
    [12] Bisquert, J., “ Theory of Impedance of Electron Diffusion and Recombination in a Thin Layer ”, J. Phys. Chem. B, Vol. 106, p.p. 325-333, 2002
    [13] Santiago, F.F., Belmonte, G. G., Bisquert, J., Zaban, A., Salvador, P., “Decoupling of Transport, Charge Storage, and Interfacial Charge Transfer in the Nanocrystalline TiO2/Electrolyte System by Impedance Methods”, J. Phys. Chem. B, Vol.106, p.p. 334-339, 2002
    [14] Santiago, F. F., Bisquert, J., Boschloo, G., Hagfeldt, A., Belmonte, G. G., “Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy”, Solar Energy Material & Solar Cells 87, Vol. 87, p.p. 117-131, 2005
    [15] Cameron, P. J., Peter, L.M., “How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?” J. Phys. Chem. B, Vol. 109, p.p. 7392-7398, 2005
    [16] Hoshikawa, T., Kikuchi, R., Eguchi, K., “Impedance analysis for dye-sensitized solar cells with a reference electrode”, Journal of Electroanalytical Chemistry, Vol. 588, p.p. 59-67, 2006
    [17] Koide, N., Islam, A., Chiba, Y., Han, L., “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 182, p.p. 296-305, 2006
    [18] Santiago, F. F., Bisquert, J., Palomares, E., Otero, L., Kuang, D., Zakeeruddin, S. M., Gratzel, M., “Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids”, J. Phys. Chem. C, Vol. 111, p.p. 6550-6560, 2007
    [19] Nuwayhid, R. Y., Shihadeh, A., Ghaddar, N., “Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling”, Energy Conversion and Management, Vol 46, p.p.1631-1643, 2005
    [20] Xi, H., Luo, L., Fraisse, G. “Development and applications of solar-based thermoelectric technologies”, Renewable and Sustainable Energy Reviews, Vol. 11, p.p. 923–936, 2007
    [21] Vladikova, D., “The Technique of the Differential Impedance Analysis”, Advanced Techniques for Energy Sources Investigation and Testing, p.p. L8 1-27, 2004
    [22] Hoshikawa, T., Ikebe, T., Kikuchi, R., Eguchi, K., “Effects of electrolyte in dye-sensitized solar cells and evaluation by impedance spectroscopy” Electrochimica Acta, Vol. 51, p.p. 5286-5294, 2006
    [23] http://en.wikipedia.org/wiki/Titanium_dioxide
    [24] Xuan, X.C., “Investigation of thermal contact effecton thermoelectric coolers”, Energy Conversion and Management, Vol. 44, p.p. 399–410, 2003
    [25] Incropera, F. P., DeWitt, D.P., “Fundamentals of Heat and Mass Transfer”, Wiley, Fifth Edition, 2002
    [26] http://www.tande.com.tw/te-air-cooler.htm

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE