簡易檢索 / 詳目顯示

研究生: 麥富鈞
Fu-Chun Mai
論文名稱: 等周不等式
Isoperimetric Inequalities
指導教授: 張樹城
Shu-Cheng Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 29
中文關鍵詞: 等周不等式變分法
外文關鍵詞: Isoperimetric Inequalities, variation, Coarea Formula
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 假設C為平面上一條簡單封閉總長為L的區線以及G為曲線C所圍出來的區域,G的面積為A, 則我們恆有L² - 4 π A大於等於0。以此不等式為基礎,本篇文章的焦點集中在一系列的等周不等式,那些等周不等氏可以看作L² - 4 π A大於等於0在高維度空間或是更一般情形的推廣。


    Let C be a simple closed curve of length L in R² and G be the domain bounded by C of the area A, we have
    (*) L² - 4 π A >= 0.
    The purpose of the paper focuses on inequalities which can be regarded as generalizations of (*) and inequalities which imply isoperimetric inequalities for n-dimensional manifolds in .

    Contents Abstract Acknowledgement Introduction 1 1. Isoperimetric Inequality For R² 3 2. Bonnesen Type Inequalities 6 3. Isoperimetric Inequality for Surfaces 9 4. Isoperimetric Inequality For Rⁿ 11 4.1. The Isoperimetric Inequality For Minkowski Content. 11 4.2. Hausdorff Metric 11 4.3. Brumm-Minkowski Inequality 14 5. Isoperimetric Inequality Involving Mean Curvature 17 5.1 Mean Curvature 17 5.2 First Variation Of Area. Radical Variation 17 5.3 Covering Lemma 20 5.4 Isoperimetric Inequalities Involving Mean Curvature 21 6. Applications 24 6.1 Sobolev Constant In Rⁿ 24 6.2 An Upper Bound For Sobolev's Constant On Closed Surfaces 26 Reference 29

    [Bu] Yu.D.Burago & V.A.Zalgaller (1980). Geometric inequalities. Berlin: Springer-Verlag, 1988
    [C] Issac Chavel (2001) Isoperimetric inequalities, Cambridge University Press.
    [Do Carmo] Do Carmo, Manfredo Differential Curves and Surfaces. Prentice Hall, New Jersey, 1976
    [F] H.Federer (1969). Geometric Measure Theory. New York: Springer-Verlag
    [Har] Hartman, P(1964) Geodesic Parallel Coordinate In The Large. Amer. J. Math 86, 705-727.
    [O1] R.Osserman (1978) The isoperimetric inequalities. Bull.Amer.Math.Soc., vol 84, p.1182-1238.
    [O2] R.Osserman (1979) Bonnesen-style isoperimetric inequalities. Amer.Math.Monthly, vol 1, p. 1-29,
    [Peter Li] Peter Li Lecture Notes on Geometric Analysis. Department of Mathematics . University of California 1992; Revised - August 15, 1996

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE