研究生: |
牧智勤 Mu, Chih Chin |
---|---|
論文名稱: |
探索新穎鈦亞磷酸鹽/磷酸鹽與 40 員環隧道雙金屬亞磷酸鹽之金屬修飾研究 Explorations of Novel Titanium Phosphites/Phosphates and Metal-Center Modifications in 40-Ring-Channel Bimetal Phosphites |
指導教授: |
王素蘭
Wang, Sue Lein |
口試委員: |
鄭建鴻
Cheng, Chien Hong 李光華 Lii, Kwang Hwa |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 164 |
中文關鍵詞: | 鈦亞磷酸鹽/磷酸鹽 、金屬修飾 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究論文利用水熱反應法成功開發了鈦亞磷酸鹽/磷酸鹽系列,並針對本實驗室過去所合成40員環隧道的鋅鎵亞磷酸鹽結構(NTHU-13-40R),嘗試金屬取代的合成,以進行更深入的性質研究。此兩項研究共合成五個新的化合物,其晶體結構皆以單晶X光繞射方法解析,並以粉末X光圖譜鑑定產物樣品純度,再進行其他物理及化學性質的測量。研究成果分為A 和B兩個系列討論:
A 系列為三個具有不同氧化態的鈦亞磷酸鹽/磷酸鹽,分別為一個三價鈦亞磷酸鹽Ti2(HPO3)3 (A1)、一個混價鈦亞磷酸鹽(H3O)[Ti3(HPO3)6] (A2)與一個鈦鋅磷酸鹽(H3tren)[TiZn3(HPO4)2(PO4)3] (A3)。A1是目前文獻中第一個三價鈦亞磷酸鹽,其結構由TiO6八面體以共面形成罕見的Ti2O9雙聚體,與HPO3共角連結成具有12員環的三維結構,與Fe2(HPO3)3等結構;A2是第一個三價與四價鈦各佔有獨立位置的鈦亞磷酸鹽,其結構是以TiO6八面體做為連結點,和HPO3形成一維的四環無限鏈,彼此連結成新穎的三維結構;A3是第一個鈦鋅磷酸鹽,其結構為TiO6八面體、ZnO4四面體與磷酸組成的二維無機層,質子化的有機胺透過豐富的氫鍵作用力鑲嵌在無機層上下兩側,平衡無機層的負電荷形成新穎的有機無機複合擬中性層結構。文獻上TiPOs結構非常罕見,且三價與混價的鈦亞磷酸鹽和鈦鋅磷酸鹽皆未曾被發表過,因此A系列的三個化合物在TiPOs系統中是很大的突破。
B系列為鋅鎵亞磷酸鹽NTHU-13-40R的後續性質研究。首先,將其三價金屬中心鎵成功的以三價鋁及鐵置換,得到相同骨架的鋁及鐵的類比物(40R-Al、40R-Fe),並晶格體積會隨著金屬晶格半徑的提升而上升變化。其次,針對NTHU-13-40R中鋅金屬中心進行過渡金屬的摻雜,(C8H17NH3)6[Ga2F2Zn9-xMx(H2O)4(HPO3)14] (M=Mn, Fe, Co, Ni, Cu),將五種不同的二價金屬成功的摻雜在六配位的Zn2+位置。此系列成功在NTHU-13-40R摻雜五種過渡金屬,使結構擁有三種不同的金屬中心,並且此結構具有金屬中心的可置換性,可將原本逆磁性物質轉變成具有反鐵磁性的材料,使NTHU-13-40R結構更具應用價值。
The thesis focuses on titanium phosphites/phosphates and metal-center modifications in 40-ring-channel bimetal phosphites. Five compounds synthesized by hydrothermal method were characterized by single crystal X-ray diffraction; their purity was examined by comparing powder diffraction patterns with theoretical patterns and their physical properties was also measured. These compounds are grouped into A, B series to discuss.
A series includes three titanium phosphites/phosphates [Ti2(HPO3)3 (A1), (H3O)[Ti3(HPO3)6] (A2), (H3tren)[TiZn3(HPO4)2(PO4)3](A3)] with different oxidation state. A1 is the first three-valent titanium(III) phosphite. The structure consists of distorted TiO6 octahedra which share faces to form a dimeric Ti2O9 unit. These dimers are interlinked by the phosphite groups, which link into a three-dimensional arrangement having 12R channel. The compounds are isostructural with Fe2(HPO3)3. A2 is the mixed-valent titanium(III)/(IV) phosphite. It is made of octahedrally coordinated titanium and tetrahedrally coordinated phosphorus centers to build 4R chain, and chains were linked into novel three-dimensional structure. A3 is two-dimensional titanium(IV) zincophosphate. Its inorganic layers consist TiO6 octahedra and ZnO4, HPO4 and PO4 tetrahedra. Its irremovable template, H3tren3+ ion, forms strong hydrogen bonding on the [TiZn3(HPO4)2(PO4)3]3- to balance the charge of inorganic layers.
B series discusses on gallium zincophosphites system with 40-ring-channel (40R-NTHU-13). Without changing the structure, trivalent metal ion, Ga3+ could be completely replaced by Al3+ and Fe3+, namely 40R-Al and 40R-Ga. Transition metal ions, such as Mn2+, Fe2+, Co2+, Ni2+, Cu2+ can also be separately incorporated into six-coordinated Zn2+ center in structure. The metal-incorporated positions and amounts can be clearly characterized. In this series, we successfully insert five metal ions into the framework and make the metal center exchangeable, which render the material from diamagnetic to anti-ferromagnetic.
In this research, two series have been developed by strategic experiments, and both structures and properties of all compounds are creative. In future, many possibilities on these series for continuing more investigation are promising.
第一章
[1]Celestian, A. J.; Parise, J. B.; Goodell, C.; Tripathi, A.; Hanson, J. Chem. Mater., 2004, 16, 2244.
[2]Chae, H. K. et al. Nature, 2004, 427, 523.
[3]Kuznickl, S.M.; et al. Nature, 2001, 412, 720.
[4]Thomas, J. M.; Raja, R.; Sankar, G.; Bell, R. G. Nature, 1999, 398, 227.
[5]A. F. Cronstedt, Akad handl. Stockholm, 1756, 17, 120.
[6]Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc., 1982, 104, 1146.
[7]Moore, P. B.; Shen, J. Nature, 1983, 306, 356.
[8]Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowdert, C. Nature, 1988, 331, 698.
[9]Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature, 1991, 352, 320.
[10]Huo, Q.; Xu, R.; Li, S.; Ma, Z.; Thomas, J. M.; Jones, R. H.; Chippindale A. M. J. Chem. Soc. Chem. Commun., 1992, 875.
[11]Zhou, Y.; Zhu, H.; Chen, Z.; Chen, M.; Xu, Y.; Zhang, H.; Zhao, D.; Angew. Chem. Int. Ed., 2001, 40, 2166.
[12]Liang, J.; Li, J.; Yu, J.; Chen, P.; Fang, Q.; Sun, F.; Xu, R. Angew. Chem. Int. Ed., 2006, 45, 2546.
[13]Yang, Y.; Li, N.; Song, H.; Wang, H.; Chen, W.; Xiang, S. Chem. Mater., 2007, 19, 1889.
[14]Zhao, L.; Li, J. Y.; Cheri, P.; Xu, R.; Chem. Mater., 2008, 20, 17.
[15]Doran, M. B.; Norquist, A. J.; O’Hare, D.; Chem. Comm., 2002, 2946.
[16]Bull, I.; Wheatley, P. S.; Lightfoot, P.; Morris, R. E.; Sastre, E.; Wright, P. A. Chem. Comm., 2002, 1180.
[17]Altrecht-Schmitt, T. E. Angew. Chem. Int. Ed. 2005, 44, 4836.
[18]Zhou, Y.; Zhu, H.; Chen, Z.; Chen, M.; Xu, Y.; Zhang, H.; Zhao, D. Angew. Chem. Int. Ed. 2001, 40, 2166.
[19]Plevert, J.; Gentz, T. M.; Laine, A.; Li, H.; Young, V. G.; Yaghi, O. M.; O’Keeffe, M. J. Am. Chem. Soc. 2001, 123, 12706.
[20]Zou, X.; Conradson, T.; Klingstedt, M.; Dadachov, M. S.; M. O’Keeffe. Nature, 2005, 437, 716.
[21]Wessels, T.; Baerlocher, C.; McCusker, L. B.; Creyghton, E. J. J. Am. Chem. Soc., 1999, 121, 6242.
[22]Burton, A.; Elomari, S.; Chen, C. Y.; Ronald, C. M.; Chan, I. Y.; Bull, L. M.; Kibby, C.; Harris, T. V.; Zones, S. I.; Vittoratos, E. S. Chem. Eur. J., 2003, 9, 5737.
[23]Strohmaier, K. G.; Vaughan, D. E. W. J. Am. Chem. Soc., 2003, 125, 16035.
[24]Wang, M. S.; Guo, G. C.; Chen, W. T.; Xu, G.; Zhou, W. W.; Wu, K. J.; Huang, J. S. Angew. Chem. Int. Ed., 2007, 46, 1.
[25]Boy, I.; Stowasser, F.; Schafer, G.; Kniep, R. Chem. Eur. J., 2001, 7, 834.
[26]Zhu, J.; Bu, X.; Feng, P.; Stucky, G. D. J. Am. Chem. Soc., 2000, 122, 11563.
[27]Halasyamani, P. S.; Walker, S. M.; O’Hare, D. J. Am. Chem. Soc., 1999, 121, 7415.
[28]Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science, 2005, 310, 1166.
[29]Wang, B.; Cote, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Nature, 2008, 453, 207.
[30]Breck, D. W. Zeolite Molecular Sieves,Wiley, New York, 1974.
[31]Thomas, J. M.; Raja, R.; Sankar, G.; Bell, R. G. Nature, 1999, 398, 227.
[32]Miller, R. D. Science, 1999, 286, 421.
[33]Thomas, J. M. Angew. Chem., Int. Ed., 1999, 38, 3588.
[34]Kuznickl, S. M. et al. Nature, 2001, 412, 720.
[35]Davis, M. E. Nature, 2002, 417, 813.
[36]Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science, 2002, 295, 469.
[37]Forster, P. M.; Eckert, J.; Chang, J. S.; Park, S. E.; Férey, G.; Cheetham, A. K. J. Am. Chem. Soc., 2003, 125, 1309.
[38]Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed., 2004, 43, 2334.
[39]Murugavel, R.; ChoudHury, A.; Walawalkar, M. G.; Pothiraja, R.; Rao, C. N. R. Chem. Rev., 2008, 108, 3549.
[40]Merlino, S.; Miner. Mag., 1988, 52, 377.
[41]Bujdak, J.; Slosiarikova, H. J. Therm. Analy., 1994, 41, 825.
[42]Takei, T.; Sekijima, K.; Wang, D.; Kumada, N.; Kinomura, N. Solid State Ionic, 2004, 170, 111.
[43]Zima, V.; Benes, L.; Melanova, K.; Vlcek, M. J. Solid State Chem., 2002, 163, 281.
[44]Espina, A.; Menendez, F. Mater. Res. Bulletin, 1998, 33, 763.
[45]Peng, L.; Yu, J.; Li, Y.; Xu, R. Chem. Mater., 2005, 17.
[46]Plevert, J; Gentz, T. M.; Laine, A.; Li, H.; Young, V. G.; Yaghi, O. M.; O’Keeffe, M. J. Am. Chem. Soc., 2001, 123, 12706.
[47]Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature, 1999, 402, 276.
[48]Murray, L. J.; Dincă, M.; Long, J. R. Chem. Soc. Rev., 2009, 38, 1294.
[49]Han, S. S.; Mendoza-Cortés, J. L.; Goddard III, W. A. Chem. Soc. Rev., 2009, 38, 1460.
[50]Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev., 2009, 38, 1477.
[51]Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev., 2009, 38, 1330.
[52]Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature, 1991, 352, 320.
[53]Liang, J.; Li, J.; Yu, J.; Chen, P.; Fang, Q.; Sun, F.; Xu, R. Angew. Chem. Int. Ed., 2006, 45, 2546.
[54]Liao, Y. C.; Lin, C. H.; Wang, S. L. J. Am. Chem. Soc., 2005, 127, 9986.
[55]Yang, Y. C.; Wang, S. L. J. Am. Chem. Soc., 2008, 130, 1146.
[56]Jhang, P. C.; Chuang. N. T.; Wang, S. L. Angew. Chem. Int. Ed., 2010, 49, 4200.
[57]Liao, Y. C.; Liao, F. L.; Chang, W. K.; Wang, S. L. J. Am.Chem. Soc., 2004, 126, 1320.
[58]Huang, S. H.; Lin, C. H.; Wu, W. C.; Wang, S. L. Angew. Chem. Int. Ed., 2009, 48, 6124.
[59]王素蘭,科儀新知,民國九十四年二月第二十六卷第四期
[60]APEX II software package; Bruker AXS, Madison, WI, 2008.
[61]Sheldrick, G. M. SHELXTL programs, Release Version 5.1; Bruker AXS, Madison, WI, 1998.
第二章
[1]Fujishima, A.; Honda, K. Nature, 1972, 238, 37.
[2](a) Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. Angew. Chem. Int. Ed., 2012, 51, 3364. (b) Toyao, T.; Saito, M.; Horiuchi, Y.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Matsuoka, M. Catal. Sci. Technol., 2013, 3, 2092. (c) Nasalevich, M. A.; Becker, R.; Ramos-Fernandez, E. V.; Castellanos, S.; Veber, S. L.; Fedin, M. V.; Kapteijn, F.; Reek, J. N. H.; van der Vlugt, J. I.; Gascon, J. Energy Environ. Sci., 2015, 8, 364.
[3]Roberts, M. A.; Sankar, G.; Thomas, J. M.; Jones, R. H.; Du, H.; Chen, J.; Pang, W.; Xu, R. Nature, 1996, 381, 401.
[4]Ekambaram, S.; Sevov, S. C. Angew. Chem. Int. Ed., 1999, 38, 372.
[5]Ekambaram, S.; Serre, C.; Férey, G.; Sevov, S. C. Chem. Mater., 2000, 12, 444.
[6]Guo, Y.; Shi, Z.; Yu, J.; Wang, J.; Liu, Y.; Bai, N.; Pang, W. Chem. Mater., 2001, 13, 203.
[7]Mafra, L.; Almeida Paz, F. A.; Rocha, J.; Espina, A.; Khainakov, S. A.; García, J. R.; Fernandez, C. Chem. Mater., 2005, 17, 6287.
[8]Morris, R. E.; Attfield, M. P.; Cheetham, A. K. Acta Cryst., 1994, C50, 473.
[9]Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. J. Phys. Chem. C, 2012, 116, 20848.
第三章
[1]Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc., 1982, 104, 1146.
[2]Moore. P. B.; Shen, J. Nature, 1983, 306, 356.
[3]Shieh, M.; Martin, K. J.; Squattrito, P. J.; Clearfield, A. Inorg. Chem., 1990, 29, 958.
[4]Bonavia, G.; DeBord, J.; Haushalter, R. C.; Rose, D.; Zubieta, J. Chem. Mater., 1995, 7, 1995.
[5]Rodgersa, J. A.; Harrison, W. T. A. Chem. Commun., 2000, 2385.
[6](a) Lu A.; Song, H.; Li, N.; Xiang, S.; Guan, N.; Wang, H. Chem. Mater., 2007, 19, 4142. (b) Wang, L.; Song, T.; Fan, Y.; Wang, Y.; Xu, J.; Shi, S.; Zhu. T. J. Solid State Chem., 2006, 179, 824. (c) Wang, L.; Song, T.; Xu, J.; Wang, Y.; Tian, Z.; Shi, S. Microporous Mesoporous Mater., 2006, 96, 287. (d) Mandal, S.; Natarajan, S. Inorg. Chem., 2008, 47, 5304 and references therein.
[7]Liang, J.; Li, J.; Yu, J.; Chen, P.; Fang, Q.; Sun, F.; Xu, R. Angew. Chem. Int. Ed., 2006, 45, 2546.
[8]Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, C. Nature, 1988, 331, 698.
[9]Estermann, M.; McCusker, L. B., Baerlcher, C.; Merrouche, A.; Kessler, H. Nature, 1991, 352, 320.
[10]Freyhardt, C. C.; Tsapatsis, M.; Lobo, R. F.; Balkus Jr, K. J.; Davis, M. E. Nature, 1996, 381, 295.
[11]Guillou, N.; Gao, Q.; Forster, P. M.; Chang, J. S.; Noguès, M.; Park, S. E.; Férey, G.; Cheetham, A. K. Angew. Chem. Int. Ed., 2001, 40, 2831.
[12]Yang, G. Y.; Sevov, S. C. J. Am. Chem. Soc., 1999, 121, 8389.
[13]Lin, C. H.; Wang, S. L.; Lii, K. H. J. Am. Chem. Soc., 2001, 123, 4649.
[14]Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M. S.; O’Keeffe, M. Nature, 2005, 437, 716.
[15]Lai, Y. L.; Lii, K. H.; Wang, S. L. J. Am. Chem. Soc., 2007, 129, 5350.
[16]Ren, X.; Li, Y.; Pan, Q.; Yu, J.; Xu, R.; Xu, Y. J. Am. Chem. Soc., 2009, 131, 14128.
[17]Sun, J.; Bonneau, C.; Cantin, A.; Corma, A.; Diaz-Cabanas, M. J.; Moliner, M.; Zhang, D.; Li, M.; Zou, X. Nature, 2009, 458, 1154.
[18]Chen, H.; Yu, Z.-B.; Bacsik, Z.; Zhao, H.; Yao, Q.; Sun, J. Angew. Chem. Int. Ed., 2014, 53, 3608.
[19]Liang, J.; Su, J.; Luo, X.; Wang, Y.; Zheng, H.; Chen, H.; Zou, X.; Lin, J.; Sun, J. Angew. Chem. Int. Ed., 2015.
[20]Lin, H. Y.; Chin, C. Y.; Huang, H. L.; Huang, W. Y.; Sie, M. J.; Huang, L. H.; Lee, Y. H.; Lin, C. H.; Lii, K. H.; Bu, X.; Wang, S. L. Science, 2013, 339, 811.