簡易檢索 / 詳目顯示

研究生: 曾冠維
Guan-Wei Zeng
論文名稱: 錐度量空間上函數的 Korovkin 型近似定理 之研究
The study of Korovkin type approximation theorem for functions on cone metric space
指導教授: 陳正忠
Jeng-Chung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 25
中文關鍵詞: 錐度量空間多值函數線性廣義錐度量空間
外文關鍵詞: cone metric, generalized cone metric, Hausdorff metric
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要的目的是研究關於單值和多值函數的Korovkin 型近
    似定理的結果。對於實數值單值函數的Korovkin 型近似定理,我們將
    討論函數定義在錐度量空間和廣義錐度量空間兩種情形,而多值函數
    的Korovkin 型近似定理,我們將討論從實數對映到實數中有界且封閉
    集合的函數和從度量空間對映到實數中有界且封閉的集合兩種情
    形。


    The paper is concerned with the result of the Korovkin type
    approximation theorem related to functions of single-valued and
    multi-valued. For the study of Korovkin type approximation theorem of
    single-valued, we discuss the functions define on the space of cone
    metric and generalized cone metric. As for the Korovkin type
    approximation theorem of multi-valued, we discuss the functions from
    real number to closed and bounded sets of real number, the functions
    from metric space to closed and bounded sets of real number and the
    functions from partial metric space to closed and bounded sets of partial
    metric space.

    1. Introduction . . . . . . . . . . . . . . . . . 2 2. Main result . . . . . . . . . . . . . . . . . .4 3. References . . . . . . . . . . . . . . . . . . 19

    [1] Acar, Tuncer, and Fadime Dirik. Korovkin-Type Theorems in Weighted LP -
    Spaces via Summation Process. The Scientific World Journal, (2013).
    [2] Al-Muhja, Malik Saad. A Korovkin type approximation theorem and Its applications.
    Abstract and Applied Analysis. Vol. 2014. Hindawi Publishing Corporation,
    (2014).
    [3] Altomare, F. Korovkin-type theorems and approximation by positive linear
    operators. Surveys in Approximation Theory,(2010).
    [4] Aydi, Hassen, Mujahid Abbas, and Calogero Vetro. Partial Hausdorff metric
    and Nadlers fixed point theorem on partial metric spaces. Topology and its
    Applications 159.14 (2012): 3234-3242.
    [5] Bardaro, Carlo, and et al. Korovkin-Type Theorems for Modular -AStatistical
    Convergence. Journal of Function Spaces, (2015).
    [6] Browder, Felix E. The fixed point theory of multi-valued mappings in topological
    vector spaces. Mathematische Annalen 177.4 (1968): 283-301.
    [7] Chen, C. M.,Karapınar, E. Fixed point results for the ±-Meir-Keeler contraction
    on partial Hausdorff metric spaces. Journal of Inequalities and Ap-
    plications,(2013).
    [8] Demirci, Kamil, and Sevda Karaku¸s. Korovkin-type approximation theorem
    for double sequences of positive linear operators via statistical A-summability.
    Results in Mathematics 63.1-2 (2013): 1-13.
    [9] Do˘gru, Og¨un. Approximation properties of a generalization of positive linear
    operators. Journal of Mathematical Analysis and Applications 342.1 (2008):
    161-170.
    [10] Duman, Oktay. A-statistical convergence of sequences of convolution operators.
    Taiwanese Journal of Mathematics 12.2 (2008): pp-523.
    [11] Ergur, Alperen Ali, and Oktay Duman. Generalization of statistical Korovkin
    theorems. Journal of Applied Mathematics, (2013).
    [12] Finta, Zolt´an. Note on a Korovkin-type theorem. Journal of Mathematical
    Analysis and Applications 415.2 (2014): 750-759.
    [13] Huang, Long-Guang, and Xian Zhang. Cone metric spaces and fixed point
    theorems of contractive mappings. Journal of mathematical Analysis and Ap-
    plications 332.2 (2007): 1468-1476.
    [14] Karakus, Sevda, and Kamil Demirci. Equi-statistical extension of the Korovkin
    type approximation theorem. Turkish J. Math 33 (2009): 159-168.
    [15] Karaku¸s, Sevda, and Kamil Demirci. A-summation process and Korovkintype
    approximation theorem for double sequences of positive linear operators.
    Mathematica Slovaca 62.2 (2012): 281-292.
    [16] Keimel, Klaus, and Walter Roth. A Korovkin type approximation theorem
    for set-valued functions. Proceedings of the American Mathematical Society
    104.3 (1988).
    [17] P.P.Korovkin: Liner Operators and Approximation Therom Translated from
    the Russian Edition,(1959)
    [18] Mizoguchi, Noriko, andWataru Takahashi. Fixed point theorems for multivalued
    mappings on complete metric spaces. Journal of Mathematical Analysis
    and Applications 141.1 (1989): 177-188.
    [19] Mursaleen, M., and Adem Kilicman. Korovkin Second Theorem via BStatistical
    A-Summability. Abstract and Applied Analysis. Vol. 2013. Hindawi
    Publishing Corporation, (2013).
    [20] Mursaleen, Mohammad, and Abdullah Alotaibi. Korovkin type approximation
    theorem for functions of two variables through statistical A-summability.
    Advances in Difference Equations 2012.1 (2012): 1-10.
    [21] Mustafa, Zead, and Brailey Sims. A new approach to generalized metric
    spaces. Journal of Nonlinear and convex Analysis 7.2 (2006): 289-297.
    [22] Orhan, Sevda, and Kamil Demirci. Statistical A-summation process and Korovkin
    type approximation theorem on modular spaces. Positivity 18.4 (2014):
    669-686.
    [23] Rezapour, Sh, and R. Hamlbarani. Some notes on the paper “Cone metric
    spaces and fixed point theorems of contractive mappings”. Journal of Math-
    ematical Analysis and Applications 345.2 (2008): 719-724.
    [24] Uygun, Nihan. On the Korovkin approximation theorem and Volkov-type
    theorems. Journal of Inequalities and Applications 2014.1 (2014): 1-5.
    [25] Wardowski, Dariusz. On set-valued contractions of Nadler type in cone metric
    spaces. Applied Mathematics Letters 24.3 (2011): 275-278.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE