研究生: |
葉英傑 Yeh, Ying-Chieh |
---|---|
論文名稱: |
白色念珠菌Aro1影響細胞壁完整性、生物膜形成及致病性之研究 Influence of Candida albicans Aro1 on cell wall integrity, biofilm formation and virulence |
指導教授: |
藍忠昱
Lan, Chung-Yu 傅化文 Fu, Hua-Wen |
口試委員: |
高茂傑
Kao, Mou-Chieh 謝家慶 Shieh, Jia-Ching 賴志河 Lai, Chih-Ho |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 白色念珠菌 、Aro1 、細胞壁 、生物膜 、致病性 |
外文關鍵詞: | Candida albicans, Aro1, cell wall, biofilm, virulence |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白色念珠菌是一種伺機性病原菌,能夠引起表淺性甚至致命性的全身感染。白色念珠菌ARO1基因編譯一種arom多功能酵素,可能參與莽草酸路徑的催化反應以合成芳香族胺基酸。這個合成路徑存在於真菌卻不存在哺乳類中,代表Aro1是個發展抗菌藥物具有吸引力的目標。然而,白色念珠菌的Aro1功能至今還沒被探討。在此,我們顯示ARO1基因降低菌株顯現的生長缺陷可藉由補充芳香族胺基酸來回復。此外,ARO1基因降低菌株容易聚集並沉澱。而這些ARO1基因降低也會造成細胞壁特性與組成改變,並促進白色念珠菌細胞貼附到聚苯乙烯與生物膜形成。再者,我們的結果指出ARO1基因降低會影響白色念珠菌與表皮細胞之間的交互作用並造成宿主細胞損傷。最後,ARO1基因降低菌株也顯示出其毒性下降。總結來說,這個研究對於未來治療白色念珠菌提供代謝與毒性上全新觀點。
Candida albicans is an opportunistic pathogen capable of causing superficial infections to life-threatening systemic infections. The C. albicans ARO1 gene encodes an arom multifunctional enzyme, which can catalyze reactions of the shikimate pathway to synthesize aromatic amino acids. This pathway exists in fungi but not in mammals, representing an attractive target for antifungal drug development. However, the functions of C. albicans Aro1 have not been characterized. Here, we showed that defective growth in the ARO1-knockdown strain was rescued by supplemental aromatic amino acids. In addition, the ARO1-knockdown strain was easily aggregated and precipitated. The knockdown of ARO1 also caused changes in properties and compositions of cell wall and promoted cell adhesion to polystyrene and biofilm formation in C. albicans. Moreover, our results indicate that ARO1 knockdown affects the interaction between C. albicans and epidermal cells and causes host cell damage. Finally, the ARO1-knockdown strain showed attenuation of C. albicans virulence. Together, this work sheds new insights into nutrient metabolism, cell wall and virulence of C. albicans.
1. Odds FC. Candida infections: an overview. Crit Rev Microbiol. 1987;15(1):1-5. Epub 1987/01/01. doi: 10.3109/10408418709104444. PubMed PMID: 3319417.
2. Brandt ME. Candida and Candidiasis. Emerging Infectious Diseases. 2002;8(8):876-. doi: 10.3201/eid0808.020059. PubMed PMID: PMC2732517.
3. Ruan SY, Hsueh PR. Invasive candidiasis: an overview from Taiwan. J Formos Med Assoc. 2009;108(6):443-51. Epub 2009/06/12. doi: 10.1016/s0929-6646(09)60091-7. PubMed PMID: 19515624.
4. Karkowska-Kuleta J, Rapala-Kozik M, Kozik A. Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochimica Polonica. 2009;56(2):211-24. PubMed PMID: WOS:000267607200002.
5. Ruan SY, Hsueh PR. Invasive candidiasis: an overview from Taiwan. Journal of the Formosan Medical Association. 2009;108(6):443-51. Epub 2009/06/12. doi: 10.1016/s0929-6646(09)60091-7. PubMed PMID: 19515624.
6. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, Gould IM, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol. 2007;45(6):1735-45. Epub 2007/04/20. doi: 10.1128/jcm.00409-07. PubMed PMID: 17442797; PubMed Central PMCID: PMC1933070.
7. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol. 2010;48(4):1366-77. Epub 2010/02/19. doi: 10.1128/jcm.02117-09. PubMed PMID: 20164282; PubMed Central PMCID: PMC2849609.
8. Zonios DI, Bennett JE. Update on azole antifungals. Seminars in respiratory and critical care medicine. 2008;29(2):198-210. Epub 2008/03/28. doi: 10.1055/s-2008-1063858. PubMed PMID: 18366001.
9. Roemer T, Krysan DJ. Antifungal Drug Development: Challenges, Unmet Clinical Needs, and New Approaches. Cold Spring Harbor Perspectives in Medicine. 2014;4(5). doi: 10.1101/cshperspect.a019703. PubMed PMID: 24789878; PubMed Central PMCID: PMCPmc3996373.
10. Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiology and molecular biology reviews : MMBR. 2011;75(2):213-67. Epub 2011/06/08. doi: 10.1128/mmbr.00045-10. PubMed PMID: 21646428; PubMed Central PMCID: PMCPMC3122626.
11. Brown AJ, Budge S, Kaloriti D, Tillmann A, Jacobsen MD, Yin Z, et al. Stress adaptation in a pathogenic fungus. The Journal of experimental biology. 2014;217(Pt 1):144-55. Epub 2013/12/20. doi: 10.1242/jeb.088930. PubMed PMID: 24353214; PubMed Central PMCID: PMCPMC3867497.
12. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119-28. Epub 2013/01/11. doi: 10.4161/viru.22913. PubMed PMID: 23302789; PubMed Central PMCID: PMCPMC3654610.
13. Ramachandra S, Linde J, Brock M, Guthke R, Hube B, Brunke S. Regulatory networks controlling nitrogen sensing and uptake in Candida albicans. PloS one. 2014;9(3):e92734. Epub 2014/03/22. doi: 10.1371/journal.pone.0092734. PubMed PMID: 24651113; PubMed Central PMCID: PMCPMC3961412.
14. Cottier F, Muhlschlegel FA. Sensing the environment: response of Candida albicans to the X factor. FEMS microbiology letters. 2009;295(1):1-9. Epub 2009/05/29. doi: 10.1111/j.1574-6968.2009.01564.x. PubMed PMID: 19473245.
15. Ljungdahl PO, Daignan-Fornier B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 2012;190(3):885-929. Epub 2012/03/16. doi: 10.1534/genetics.111.133306. PubMed PMID: 22419079; PubMed Central PMCID: PMCPmc3296254.
16. Brown AJ, Brown GD, Netea MG, Gow NA. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends in microbiology. 2014;22(11):614-22. Epub 2014/08/05. doi: 10.1016/j.tim.2014.07.001. PubMed PMID: 25088819; PubMed Central PMCID: PMCPmc4222764.
17. Huang G. Regulation of phenotypic transitions in the fungal pathogen Candida albicans. Virulence. 2012;3(3):251-61. Epub 2012/05/02. doi: 10.4161/viru.20010. PubMed PMID: 22546903; PubMed Central PMCID: PMCPmc3442837.
18. Biswas S, Van Dijck P, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiology and molecular biology reviews : MMBR. 2007;71(2):348-76. Epub 2007/06/08. doi: 10.1128/mmbr.00009-06. PubMed PMID: 17554048; PubMed Central PMCID: PMCPMC1899878.
19. Hudson DA, Sciascia QL, Sanders RJ, Norris GE, Edwards PJ, Sullivan PA, et al. Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiology (Reading, England). 2004;150(Pt 9):3041-9. Epub 2004/09/07. doi: 10.1099/mic.0.27121-0. PubMed PMID: 15347762.
20. Hube B, Monod M, Schofield DA, Brown AJ, Gow NA. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Molecular microbiology. 1994;14(1):87-99. Epub 1994/10/01. PubMed PMID: 7830564.
21. Brock M. Fungal metabolism in host niches. Current opinion in microbiology. 2009;12(4):371-6. Epub 2009/06/19. doi: 10.1016/j.mib.2009.05.004. PubMed PMID: 19535285.
22. Nather K, Munro CA. Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS microbiology letters. 2008;285(2):137-45. Epub 2008/07/12. doi: 10.1111/j.1574-6968.2008.01263.x. PubMed PMID: 18616597.
23. Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, et al. Dectin-1 Is A Major β-Glucan Receptor On Macrophages. The Journal of Experimental Medicine. 2002;196(3):407-12. doi: 10.1084/jem.20020470. PubMed PMID: PMC2193936.
24. Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS yeast research. 2006;6(1):14-29. Epub 2006/01/21. doi: 10.1111/j.1567-1364.2005.00017.x. PubMed PMID: 16423067.
25. Lee KK, Maccallum DM, Jacobsen MD, Walker LA, Odds FC, Gow NA, et al. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrobial agents and chemotherapy. 2012;56(1):208-17. Epub 2011/10/12. doi: 10.1128/aac.00683-11. PubMed PMID: 21986821; PubMed Central PMCID: PMCPmc3256049.
26. Chaffin WL. Candida albicans Cell Wall Proteins. Microbiology and Molecular Biology Reviews. 2008;72(3):495-544. doi: 10.1128/mmbr.00032-07.
27. Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiology and molecular biology reviews : MMBR. 1998;62(1):130-80. Epub 1998/04/08. PubMed PMID: 9529890; PubMed Central PMCID: PMC98909.
28. Shepherd MG, Poulter RT, Sullivan PA. Candida albicans: biology, genetics, and pathogenicity. Annual review of microbiology. 1985;39:579-614. Epub 1985/01/01. doi: 10.1146/annurev.mi.39.100185.003051. PubMed PMID: 3904613.
29. Calderone RA, Braun PC. Adherence and receptor relationships of Candida albicans. Microbiological reviews. 1991;55(1):1-20. Epub 1991/03/01. PubMed PMID: 2030668; PubMed Central PMCID: PMC372798.
30. Boxx GM, Kozel TR, Nishiya CT, Zhang MX. Influence of mannan and glucan on complement activation and C3 binding by Candida albicans. Infect Immun. 2010;78(3):1250-9. Epub 2009/12/24. doi: 10.1128/iai.00744-09. PubMed PMID: 20028806; PubMed Central PMCID: PMCPmc2825936.
31. de Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, et al. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryotic cell. 2004;3(4):955-65. Epub 2004/08/11. doi: 10.1128/ec.3.4.955-965.2004. PubMed PMID: 15302828; PubMed Central PMCID: PMCPmc500891.
32. Adams DJ. Fungal cell wall chitinases and glucanases. Microbiology (Reading, England). 2004;150(Pt 7):2029-35. Epub 2004/07/17. doi: 10.1099/mic.0.26980-0. PubMed PMID: 15256547.
33. Hurtado-Guerrero R, Schuttelkopf AW, Mouyna I, Ibrahim AF, Shepherd S, Fontaine T, et al. Molecular mechanisms of yeast cell wall glucan remodeling. The Journal of biological chemistry. 2009;284(13):8461-9. Epub 2008/12/23. doi: 10.1074/jbc.M807990200. PubMed PMID: 19097997; PubMed Central PMCID: PMCPMC2659204.
34. Monge RA, Roman E, Nombela C, Pla J. The MAP kinase signal transduction network in Candida albicans. Microbiology (Reading, England). 2006;152(Pt 4):905-12. Epub 2006/03/22. doi: 10.1099/mic.0.28616-0. PubMed PMID: 16549655.
35. Levin DE. Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews. 2005;69(2):262-91. doi: 10.1128/MMBR.69.2.262-291.2005. PubMed PMID: PMC1197416.
36. Lesage G, Bussey H. Cell Wall Assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews. 2006;70(2):317-43. doi: 10.1128/MMBR.00038-05. PubMed PMID: PMC1489534.
37. Navarro-Garcia F, Eisman B, Fiuza SM, Nombela C, Pla J. The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans. Microbiology. 2005;151(Pt 8):2737-49. Epub 2005/08/05. doi: 10.1099/mic.0.28038-0. PubMed PMID: 16079350.
38. Navarro-Garcia F, Sanchez M, Pla J, Nombela C. Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol. 1995;15(4):2197-206. Epub 1995/04/01. PubMed PMID: 7891715; PubMed Central PMCID: PMCPmc230448.
39. Navarro-Garcia F, Alonso-Monge R, Rico H, Pla J, Sentandreu R, Nombela C. A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology (Reading, England). 1998;144 ( Pt 2):411-24. Epub 1998/03/11. doi: 10.1099/00221287-144-2-411. PubMed PMID: 9493378.
40. Campbell SA, Richards TA, Mui EJ, Samuel BU, Coggins JR, McLeod R, et al. A complete shikimate pathway in Toxoplasma gondii: an ancient eukaryotic innovation. Int J Parasitol. 2004;34(1):5-13. Epub 2004/01/09. PubMed PMID: 14711585.
41. Herrmann KM, Weaver LM. THE SHIKIMATE PATHWAY. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:473-503. Epub 2004/03/12. doi: 10.1146/annurev.arplant.50.1.473. PubMed PMID: 15012217.
42. Braus GH. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev. 1991;55(3):349-70. Epub 1991/09/01. PubMed PMID: 1943992; PubMed Central PMCID: PMCPmc372824.
43. Duncan K, Edwards RM, Coggins JR. The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochemical Journal. 1987;246(2):375-86. PubMed PMID: PMC1148286.
44. Duncan K, Edwards RM, Coggins JR. The Saccharomyces cerevisiae ARO1 gene. An example of the co-ordinate regulation of five enzymes on a single biosynthetic pathway. FEBS Lett. 1988;241(1-2):83-8. Epub 1988/12/05. PubMed PMID: 2848727.
45. Davies GM, Barrett-Bee KJ, Jude DA, Lehan M, Nichols WW, Pinder PE, et al. (6S)-6-fluoroshikimic acid, an antibacterial agent acting on the aromatic biosynthetic pathway. Antimicrobial agents and chemotherapy. 1994;38(2):403-6. PubMed PMID: PMC284469.
46. Roberts F, Roberts CW, Johnson JJ, Kyle DE, Krell T, Coggins JR, et al. Evidence for the shikimate pathway in apicomplexan parasites. Nature. 1998;393(6687):801-5. Epub 1998/07/09. doi: 10.1038/31723. PubMed PMID: 9655396.
47. Bode R, Melo C, Birnbaum D. Mode of action of glyphosate in Candida maltosa. Arch Microbiol. 1984;140(1):83-5. Epub 1984/11/01. PubMed PMID: 6152388.
48. Bode R. SF, Birnbaum D. Comparative studies on the enzymological basis for growth inhibition by glyphosate in some yeast species. Biochem Physiol Pflanzen. 1986;181(1):39-46. doi: 10.1016.
49. Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC, Seralini GE. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009;262(3):184-91. Epub 2009/06/23. doi: 10.1016/j.tox.2009.06.006. PubMed PMID: 19539684.
50. Reuss O, Vik A, Kolter R, Morschhauser J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene. 2004;341:119-27. Epub 2004/10/12. doi: 10.1016/j.gene.2004.06.021. PubMed PMID: 15474295.
51. Hsu PC, Yang CY, Lan CY. Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Eukaryotic cell. 2011;10(2):207-25. Epub 2010/12/07. doi: 10.1128/ec.00158-10. PubMed PMID: 21131439; PubMed Central PMCID: PMCPmc3067405.
52. Nakayama H, Mio T, Nagahashi S, Kokado M, Arisawa M, Aoki Y. Tetracycline-Regulatable System To Tightly Control Gene Expression in the Pathogenic Fungus Candida albicans. Infection and Immunity. 2000;68(12):6712-9. PubMed PMID: PMC97771.
53. de Souza RD, Mores AU, Cavalca L, Rosa RT, Samaranayake LP, Rosa EA. Cell surface hydrophobicity of Candida albicans isolated from elder patients undergoing denture-related candidosis. Gerodontology. 2009;26(2):157-61. Epub 2009/06/06. doi: 10.1111/j.1741-2358.2008.00229.x. PubMed PMID: 19490138.
54. Sandini S, Stringaro A, Arancia S, Colone M, Mondello F, Murtas S, et al. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans. BMC microbiology. 2011;11:106. Epub 2011/05/18. doi: 10.1186/1471-2180-11-106. PubMed PMID: 21575184; PubMed Central PMCID: PMCPmc3113926.
55. Francois JM. A simple method for quantitative determination of polysaccharides in fungal cell walls. Nat Protoc. 2006;1(6):2995-3000. Epub 2007/04/05. doi: 10.1038/nprot.2006.457. PubMed PMID: 17406560.
56. Nailis H, Coenye T, Van Nieuwerburgh F, Deforce D, Nelis HJ. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol. 2006;7:25. Epub 2006/08/08. doi: 10.1186/1471-2199-7-25. PubMed PMID: 16889665; PubMed Central PMCID: PMCPmc1557526.
57. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. Epub 2002/02/16. doi: 10.1006/meth.2001.1262. PubMed PMID: 11846609.
58. Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NA, et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol. 2012;14(9):1319-35. Epub 2012/05/17. doi: 10.1111/j.1462-5822.2012.01813.x. PubMed PMID: 22587014; PubMed Central PMCID: PMCPmc3465787.
59. Jin Y, Yip HK, Samaranayake YH, Yau JY, Samaranayake LP. Biofilm-forming ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol. 2003;41(7):2961-7. Epub 2003/07/05. PubMed PMID: 12843027; PubMed Central PMCID: PMCPmc165379.
60. Chen HF, Lan CY. Role of SFP1 in the Regulation of Candida albicans Biofilm Formation. PloS one. 2015;10(6):e0129903. Epub 2015/06/19. doi: 10.1371/journal.pone.0129903. PubMed PMID: 26087243; PubMed Central PMCID: PMCPMC4472802.
61. Negri M, Goncalves V, Silva S, Henriques M, Azeredo J, Oliveira R. Crystal violet staining to quantify Candida adhesion to epithelial cells. British journal of biomedical science. 2010;67(3):120-5. Epub 2010/10/27. PubMed PMID: 20973406.
62. Rouabhia M, Semlali A, Chandra J, Mukherjee P, Chmielewski W, Ghannoum MA. Disruption of the ECM33 gene in Candida albicans prevents biofilm formation, engineered human oral mucosa tissue damage and gingival cell necrosis/apoptosis. Mediators of inflammation. 2012;2012:398207. Epub 2012/06/06. doi: 10.1155/2012/398207. PubMed PMID: 22665950; PubMed Central PMCID: PMCPMC3361342.
63. Fuchs BB, O'Brien E, Khoury JB, Mylonakis E. Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence. 2010;1(6):475-82. Epub 2010/12/24. PubMed PMID: 21178491.
64. Sheehan G, Kavanagh K. Analysis of the early cellular and humoral responses of Galleria mellonella larvae to infection by Candida albicans. Virulence. 2018;9(1):163-72. Epub 2017/09/06. doi: 10.1080/21505594.2017.1370174. PubMed PMID: 28872999.
65. Li X, Yu C, Huang X, Sun S. Synergistic Effects and Mechanisms of Budesonide in Combination with Fluconazole against Resistant Candida albicans. PloS one. 2016;11(12):e0168936. doi: 10.1371/journal.pone.0168936. PubMed PMID: PMC5179115.
66. Hobden C, Teevan C, Jones L, O'Shea P. Hydrophobic properties of the cell surface of Candida albicans: a role in aggregation. Microbiology (Reading, England). 1995;141 ( Pt 8):1875-81. Epub 1995/08/01. doi: 10.1099/13500872-141-8-1875. PubMed PMID: 7551051.
67. Ha Y-s, Covert SF, Momany M. FsFKS1, the 1,3-β-Glucan Synthase from the Caspofungin-Resistant Fungus Fusarium solani. Eukaryotic cell. 2006;5(7):1036-42. doi: 10.1128/EC.00030-06. PubMed PMID: PMC1489279.
68. Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology. 1997;35(2):79-86. Epub 1997/03/01. PubMed PMID: 9147267.
69. Rowbottom L, Munro CA, Gow NA. Candida albicans mutants in the BNI4 gene have reduced cell-wall chitin and alterations in morphogenesis. Microbiology (Reading, England). 2004;150(Pt 10):3243-52. Epub 2004/10/08. doi: 10.1099/mic.0.27167-0. PubMed PMID: 15470104.
70. Kultz D. Phylogenetic and functional classification of mitogen- and stress-activated protein kinases. J Mol Evol. 1998;46(5):571-88. Epub 1998/06/06. PubMed PMID: 9545468.
71. Masuoka J, Hazen KC. Cell wall protein mannosylation determines Candida albicans cell surface hydrophobicity. Microbiology (Reading, England). 1997;143 ( Pt 9):3015-21. Epub 1997/10/06. doi: 10.1099/00221287-143-9-3015. PubMed PMID: 9308183.
72. Yoshijima Y, Murakami K, Kayama S, Liu D, Hirota K, Ichikawa T, et al. Effect of substrate surface hydrophobicity on the adherence of yeast and hyphal Candida. Mycoses. 2010;53(3):221-6. Epub 2009/08/13. doi: 10.1111/j.1439-0507.2009.01694.x. PubMed PMID: 19671080.
73. Sardi JC, Duque C, Mariano FS, Marques MR, Hofling JF, Goncalves RB. Adhesion and invasion of Candida albicans from periodontal pockets of patients with chronic periodontitis and diabetes to gingival human fibroblasts. Medical mycology. 2012;50(1):43-9. Epub 2011/06/16. doi: 10.3109/13693786.2011.586133. PubMed PMID: 21671830.
74. Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nature reviews Microbiology. 2011;9(2):109-18. Epub 2010/12/30. doi: 10.1038/nrmicro2475. PubMed PMID: 21189476; PubMed Central PMCID: PMCPmc3891587.
75. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2(7):e63. Epub 2006/07/15. doi: 10.1371/journal.ppat.0020063. PubMed PMID: 16839200; PubMed Central PMCID: PMCPmc1487173.
76. Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, et al. Complementary adhesin function in C. albicans biofilm formation. Current biology : CB. 2008;18(14):1017-24. Epub 2008/07/19. doi: 10.1016/j.cub.2008.06.034. PubMed PMID: 18635358; PubMed Central PMCID: PMCPmc2504253.
77. Chen YT, Lin CY, Tsai PW, Yang CY, Hsieh WP, Lan CY. Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans. Eukaryotic cell. 2012;11(2):168-82. Epub 2011/12/24. doi: 10.1128/ec.05200-11. PubMed PMID: 22194462; PubMed Central PMCID: PMCPmc3272892.
78. Naglik JR, Challacombe SJ, Hube B. Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis. Microbiology and Molecular Biology Reviews. 2003;67(3):400-28. doi: 10.1128/MMBR.67.3.400-428.2003. PubMed PMID: PMC193873.
79. O'Meara TR, Veri AO, Ketela T, Jiang B, Roemer T, Cowen LE. Global analysis of fungal morphology exposes mechanisms of host cell escape. Nature communications. 2015;6:6741. Epub 2015/04/01. doi: 10.1038/ncomms7741. PubMed PMID: 25824284; PubMed Central PMCID: PMCPMC4382923.
80. Chang T-H, Huang H-Y, Hsu JB-K, Weng S-L, Horng J-T, Huang H-D. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics. 2013;14(Suppl 2):S4-S. doi: 10.1186/1471-2105-14-S2-S4. PubMed PMID: PMC3549854.
81. Klis FM, de Groot P, Hellingwerf K. Molecular organization of the cell wall of Candida albicans. Medical mycology. 2001;39 Suppl 1:1-8. Epub 2002/01/22. PubMed PMID: 11800263.
82. Cabib E. The septation apparatus, a chitin-requiring machine in budding yeast. Archives of biochemistry and biophysics. 2004;426(2):201-7. Epub 2004/05/26. doi: 10.1016/j.abb.2004.02.030. PubMed PMID: 15158670.
83. Diez-Orejas R, Molero G, Navarro-García F, Pla J, Nombela C, Sanchez-Pérez M. Reduced virulence of Candida albicans MKC1 mutants: a role for mitogen-activated protein kinase in pathogenesis. Infection and Immunity. 1997;65(2):833-7. PubMed PMID: PMC176136.
84. Zhu W, Filler SG. Interactions of Candida albicans with Epithelial Cells. Cellular Microbiology. 2010;12(3):273-82. doi: 10.1111/j.1462-5822.2009.01412.x. PubMed PMID: PMC3383095.
85. Hazen KC. Participation of yeast cell surface hydrophobicity in adherence of Candida albicans to human epithelial cells. Infect Immun. 1989;57(7):1894-900. Epub 1989/07/01. PubMed PMID: 2659526; PubMed Central PMCID: PMCPMC313817.
86. Green CB, Zhao X, Hoyer LL. Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated candidiasis. Infect Immun. 2005;73(3):1852-5. Epub 2005/02/26. doi: 10.1128/iai.73.3.1852-1855.2005. PubMed PMID: 15731087; PubMed Central PMCID: PMCPMC1064942.
87. Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012;148(1-2):126-38. Epub 2012/01/24. doi: 10.1016/j.cell.2011.10.048. PubMed PMID: 22265407; PubMed Central PMCID: PMCPMC3266547.
88. Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532(7597):64-8. Epub 2016/03/31. doi: 10.1038/nature17625. PubMed PMID: 27027296; PubMed Central PMCID: PMCPMC4851236.
89. Naglik JR, Moyes DL, Wächtler B, Hube B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes and infection / Institut Pasteur. 2011;13(12-13):963-76. doi: 10.1016/j.micinf.2011.06.009. PubMed PMID: PMC3185145.
90. Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, et al. Dectin-1 is a major beta-glucan receptor on macrophages. The Journal of experimental medicine. 2002;196(3):407-12. Epub 2002/08/07. PubMed PMID: 12163569; PubMed Central PMCID: PMCPMC2193936.
91. Goodridge HS, Wolf AJ, Underhill DM. Beta-glucan recognition by the innate immune system. Immunological reviews. 2009;230(1):38-50. Epub 2009/07/15. doi: 10.1111/j.1600-065X.2009.00793.x. PubMed PMID: 19594628.
92. Ene IV, Brown AJP. 14 Integration of Metabolism with Virulence in Candida albicans. In: Nowrousian M, editor. Fungal Genomics XIII. 2nd ed. Berlin: Springer; 2014. p. p.349-70.
93. Sasse A, Hamer SN, Amich J, Binder J, Krappmann S. Mutant characterization and in vivo conditional repression identify aromatic amino acid biosynthesis to be essential for Aspergillus fumigatus virulence. Virulence. 2016;7(1):56-62. Epub 2015/11/26. doi: 10.1080/21505594.2015.1109766. PubMed PMID: 26605426; PubMed Central PMCID: PMCPMC4871646.
94. Bastidas RJ, Heitman J, Cardenas ME. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog. 2009;5(2):e1000294. Epub 2009/02/07. doi: 10.1371/journal.ppat.1000294. PubMed PMID: 19197361; PubMed Central PMCID: PMCPmc2631134.
95. Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics. 2011;189(4):1177-201. Epub 2011/12/17. doi: 10.1534/genetics.111.133363. PubMed PMID: 22174183; PubMed Central PMCID: PMCPmc3241408.
96. Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast. Annual review of microbiology. 2005;59:407-50. Epub 2005/09/13. doi: 10.1146/annurev.micro.59.031805.133833. PubMed PMID: 16153175.
97. Beck T, Hall MN. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature. 1999;402(6762):689-92. Epub 1999/12/22. doi: 10.1038/45287. PubMed PMID: 10604478.
98. Wendland J, Schaub Y, Walther A. N-acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes. Applied and environmental microbiology. 2009;75(18):5840-5. Epub 2009/08/04. doi: 10.1128/aem.00053-09. PubMed PMID: 19648376; PubMed Central PMCID: PMCPMC2747872.
99. Blankenship JR, Mitchell AP. How to build a biofilm: a fungal perspective. Current opinion in microbiology. 2006;9(6):588-94. Epub 2006/10/24. doi: 10.1016/j.mib.2006.10.003. PubMed PMID: 17055772.
100. Nobile CJ, Mitchell AP. Microbial biofilms: e pluribus unum. Current biology : CB. 2007;17(10):R349-53. Epub 2007/05/16. doi: 10.1016/j.cub.2007.02.035. PubMed PMID: 17502083.
101. Nett JE, Sanchez H, Cain MT, Andes DR. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. The Journal of infectious diseases. 2010;202(1):171-5. Epub 2010/05/26. doi: 10.1086/651200. PubMed PMID: 20497051; PubMed Central PMCID: PMCPMC2880631.
102. Vediyappan G, Rossignol T, d'Enfert C. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrobial agents and chemotherapy. 2010;54(5):2096-111. Epub 2010/03/03. doi: 10.1128/aac.01638-09. PubMed PMID: 20194705; PubMed Central PMCID: PMCPMC2863626.
103. Panariello BHD, Klein MI, Pavarina AC, Duarte S. Inactivation of genes TEC1 and EFG1 in Candida albicans influences extracellular matrix composition and biofilm morphology. Journal of oral microbiology. 2017;9(1):1385372. Epub 2017/10/31. doi: 10.1080/20002297.2017.1385372. PubMed PMID: 29081917; PubMed Central PMCID: PMCPMC5646609.
104. Morschhauser J, Barker KS, Liu TT, Bla BWJ, Homayouni R, Rogers PD. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS pathogens. 2007;3(11):e164. Epub 2007/11/07. doi: 10.1371/journal.ppat.0030164. PubMed PMID: 17983269; PubMed Central PMCID: PMCPmc2048531.
105. White TC, Holleman S, Dy F, Mirels LF, Stevens DA. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrobial agents and chemotherapy. 2002;46(6):1704-13. Epub 2002/05/23. PubMed PMID: 12019079; PubMed Central PMCID: PMCPmc127245.
106. Hiller D, Sanglard D, Morschhauser J. Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrobial agents and chemotherapy. 2006;50(4):1365-71. doi: 10.1128/AAC.50.4.1365-1371.2006. PubMed PMID: 16569853; PubMed Central PMCID: PMC1426927.