簡易檢索 / 詳目顯示

研究生: 鄭孝信
Cheng, Shiau-Shin
論文名稱: 有機垂直型三極體研究
The study of organic vertical-type triode
指導教授: 吳孟奇博士
Wu, Meng-Chyi
朱治偉博士
Chu, Chih-Wei
口試委員: 吳孟奇教授
鄭克勇教授
蘇炎坤教授
鄭木海教授
洪茂峰教授
劉柏村教授
陳英忠教授
朱治偉博士
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 137
中文關鍵詞: 有機垂直型三極體電流開關比反向器傳輸因子電流增益電流鏡
外文關鍵詞: organic vertical-type triode, current on/off ratio, inverter, transport factor, current gain, current mirror
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中我們將探討有機垂直型電晶體的操作機制和其應用。有機垂直型電晶體是由兩個背對背的蕭特基二極體所組成,並且可行性地架構在可撓塑膠或是玻璃基板上。由於元件的通道長度是由主動層厚度所決定,所以通道長度可以控制到次微米並且當元件施加不同基極偏壓時,飽和區的輸出電流具有調製效果。為了計算出元件的有效遷移率,在元件高電壓中的電流電壓圖將採用空間電荷限定電流模型來定義之。有機垂直型電晶體不但具有和有機薄膜電晶體一樣的電壓操作模式,並且也同時有和雙極面電晶體一樣的電流驅動模式。所以,我們透過一顆有機垂直型電晶體串聯電阻來實現第一顆負載電阻式的反向器並且探討其轉換曲線特性。在電性改善方面,為了避免在金半介面產生電偶極,在金半介面中採用氧化鉬當作緩衝層。當元件採用氧化鉬及鋁當作射極電極時,其特性相對於以金、銀當作射極電極有明顯改善,推測原因在於有緩衝層的保護下,金屬不容易擴散到有機半導體層並且可以降低能障。元件在基極電壓為-5V時,輸出電流可以到達-16.1 μA並且電流開關比為103。為了更進一步實行互補式反向器,相同特性的p和n通道有機垂直型電晶體是必要的。所以當兩個元件很匹配時(p通道元件的開電流為-229 μA,關電流為-67.6 nA,抵補電壓為-0.8 V; n通道元件的開電流為377 μA,關電流為86.9 nA,抵補電壓為0.4 V;),在輸出電壓為4V時電流增益大約為9。另一方面,元件以電流方式驅動,元件採用階梯式能階時可以獲得很高的電流增益。因為載子透過階梯式能階來增加其能量,可以避免在基極電極產生複合電流而增加輸電流。所以此時元件的傳輸因子可以到達0.99並且電流增益為20.93。當元件有較高的電流增益時,第一顆有機電流鏡可以被實行,而其輸出輸入電流比為0.75,而輸出電阻為105歐姆。而這些應用將有助於在積體電路上的發展。


    In this thesis, we have investigated the fundamental property of organic vertical-type triodes (OVTs) and their application. The OVTs are promising fabricated by employing two back-to-back Schottky diodes on the flexible or glass substrate. Due to the channel length depending on the thickness of active layer, the channel length can be controlled down to sub-micrometer and the device exhibits modulations with apparent saturation region while applying various supply voltages to the base electrode. To calculate effective mobility of the device, it is investigated by fitting the current-voltage characteristics at high voltages to the space-charge limited current (SCLC) model. The OVTs feature not only the operation procedures similar to those of bipolar junction transistors, but also those of planar-type organic thin-film transistors. Therefore, the first organic resistor-load inverter can also be achieved by integrating an OVT with a load resistor and their voltage transfer curves are demonstrated. To avoid the formation of the dipole at the metal/organic junction, a buffer layer of molybdic oxide (MoO3) is inserted at the metal/organic junction of OVT. The performance of devices featuring MoO3/Al as the emitter electrode is enhanced relative to that of corresponding devices with Au and Ag, presumably because of the reduced in the contact barrier and the prevention of metal diffusion into the organic layer. The device exhibited an output current of -16.1 μA at VB = -5 V and a current ON/OFF ratio of 103. To further realizing the complementary inverter, the similar performance of the p-channel OVT (ON current: -229 μA; OFF current: -67.6 nA; turn-on voltage: -0.8 V) and n-channel OVT (ON current: 377 μA; OFF current: 86.9 nA; turn-on voltage: 0.4 V) is fabricated and it exhibits a voltage gain of ca. 9 at a low supply voltage of 4 V. While the OVTs are operated under the current-driving mode, the OVTs operated at pronounced saturation with high gain by incorporating cascade-type energy band structure have been fabricated. Due to the most injection carriers can gain higher energy through the stepwise energy level, more carriers can surmount thin metal base electrode and diffused into the collector layer. Therefore, the device exhibited the transport factor of 0.99 and current gain of 20.93. Since the device exhibits the enough large current gain, a current mirror operated at out/in current ratio of 0.75 and output resistance of 105 Ω was achieved by integrating two p-channel OVTs with a load resistor. Theses application can enhance the development of the integrated circuits.

    Abstract (in Chinese and English)...........................................................I Contents..................................................................................................VI List of Figures......................................................................................VIII List of Tables........................................................................................XIII Chapter 1 Introduction............................................................................1 1.1 Introduction and motivation.................................................................1 1.2 Overview of this thesis.........................................................................5 Chapter 2 Organic semiconductor, Operation mechanism, Experimental and measurment instrument...........................................9 2.1 Introduction to organic semiconductors...............................................9 2.1.1 p-type organic semiconductors......................................................11 2.1.2 n-type organic semiconductors......................................................12 2.2 Introduction to operation mechanism.................................................14 2.2.1 Space-Charge Limited Current (SCLC)........................................14 2.2.2 Organic field-effect transistors (OFETs).......................................16 2.2.3Permeable Base Transistor (PBT)..................................................17 2.2.4 Static-Induction Transistor (SIT)...................................................20 2.2.5 Metal-Base Transistor (MBT).......................................................23 2.3 Experimental instrument....................................................................26 2.3.1 Thermal Evaporation.....................................................................26 2.3.2 Spin-Coating..................................................................................28 2.4 measurement instrument.....................................................................30 2.4.1 Atomic Force Microscopy (AFM).................................................30 2.4.2 X-ray Photoelectron Spectroscopy (XPS).....................................32 2.4.3 X-ray Diffraction (XRD)...............................................................34 Chapter 3 Thin-film transistor with low-voltage driving...................36 3.1 Pentacene thin film transistor with PVP-capped high-k MgO dielectric grown by reactive evaporation..................................................36 3.1.1 Induction........................................................................................36 3.1.2 Experimental details......................................................................38 3.1.3 Results and Discussion..................................................................40 3.1.4 3.1.4 Conclusion............................................................................46 3.2 Dependence of channel thickness on the performance of In2O3 thin film transistors..........................................................................................47 3.2.1 Induction........................................................................................48 3.2.2 Experimental details......................................................................50 3.2.3 Results and Discussion..................................................................51 3.2.4 Conclusion.....................................................................................61 3.3 Organic Base Modulation Triodes and Their Inverters on Flexible Substrates..................................................................................................62 3.3.1 Induction........................................................................................63 3.3.2 Experimental details......................................................................66 3.3.3 Results and Discussion..................................................................67 3.3.4 Conclusion.....................................................................................78 Chapter 4 High performance of organic vertical-type triodes and their application......................................................................................79 4.1 Using metal/organic junction engineering to prepare an efficient organic base-modulation triode and its inverter.......................................79 4.1.1 Induction........................................................................................79 4.1.2 Experimental details......................................................................82 4.1.3 Results and Discussion..................................................................84 4.1.4 3.1.4 Conclusion............................................................................90 4.2 Low-voltage complementary inverters employing organic vertical-type triodes..................................................................................91 4.2.1 Induction........................................................................................91 4.2.2 Experimental details......................................................................93 4.2.3 Results and Discussion..................................................................96 4.2.4 Conclusion...................................................................................102 4.3 Enhancement in Carrier Energy through a Cascade-Type Energy Band Structure for Efficient Organic Vertical-type Triodes.............................102 4.3.1 Induction......................................................................................103 4.3.2 Experimental details....................................................................107 4.3.3 Results and Discussion................................................................109 4.3.4 Conclusion...................................................................................121 Chapter 5 Conclusion and future work..............................................123 Reference...............................................................................................124 Publication list......................................................................................133

    [1] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986).
    [2] B. S. Ong, Y. Wu, P. Liu, S. Gardner, Adv. Mater. 17, 1141(2005).
    [3] H. Meng, F. P. Sun, M. B. Goldfinger, G. D. Jaycox, Z. G. Li, W. J. Marshall, G. S. Blackman, J. Am. Chem. Soc. 127, 2406 (2005).
    [4] A. Facchetti, M. Mushrush, M. H. Yoon, G. R. Hutchison, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 126, 13 859 (2004).
    [5] H. Moon, R. Zeis, E. J. Borkent, C. Besnard, A. J. Lovinger, T. Siegrist, C. Kloc, Z. N. Bao, J. Am. Chem. Soc. 126, 15 322 (2004).
    [6] H. Meng, F. P. Sun, M. B. Goldfinger, F. Gao, D. J. Londono, W. J. Marshal, G. S. Blackman, K. D. Dobbs, D. E. Keys, J. Am. Chem. Soc. 128, 9304 (2006).
    [7] S. Ando, R. Murakami, J. I. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 127, 14 996 (2005).
    [8] K. C. Dickey, J. E. Anthony, Y. L. Loo, Adv. Mater. 2006, 18, 1721.
    [9] K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, H. Koinuma, Adv. Mater. 2006, 18, 1713.
    [10] M. Halik, H. Klauk, U. Zschieschang1, G. Schmid, C. Dehm, M. Schu¨ tz, S.Maisch, F. Effenberger, M. Brunnbauer, F. Stellacci, Nature 2004, 431, 963.
    [11] V. Chu, J. Jarego, H. Silva, T. Silva, M. Reissner, P. Brogueira, J. P. Conde, Appl. Phys. Lett. 1997, 70, 2714.
    [12] D. J. Monsma, J. C. Lodder, T. J. A. Popma, and B. Dieny, Phys. Rev. Lett. 74, 5260 (1995).
    [13] H. Edzer, A. Huitema, G. H. Gelinck, J. Bas, P. H. van der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore, and D. M. DeLeeuw, Adv. Mater. 14, 1201 (2002).
    [14] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 80, 1088 (2002).
    [15] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. deLeeuw, Appl. Phys. Lett. 73, 108 (1998).
    [16] F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm, Appl. Phys. Lett. 84, 2673 (2004).
    [17] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Trans. Electron Devices 44, 1325 (1997).
    [18] C. D. Dimitrakopouls, and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
    [19] H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig, A. J. J.M. van Breemen, D. M. de Leeuw, Nature 414, 599 (2001).
    [20] B. Crone, A. Dodabalapur, Y.-Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 403, 521(2000).
    [21] H. Sirringhaus, N. Tessler, R. H. Friend, Science, 280, 1741 (1998).
    [22] H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, D. M. de Leeuw, Adv. Mater. 14, 1201(2002).
    [23] L. Hou, Q. Hou, Y. Mo, J. Peng, Y. Cao, Appl. Phys. Lett. 87, 243504 (2005).
    [24] A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, Z. Bao, Nature 444, 913 (2006).
    [25] J. W. Kang, W. I. Jeong, J. J. Kim, H. K. Kim, D. G. Kim, G. H. Lee, Electrochem. Solid-State Lett. 10, 75 (2007).
    [26] G. H. Gelinck, H. E. A. Huitema, E. van Veendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, D.M. de Leeuw, Nat. Mater. 3, 106 (2004).
    [27] Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett. 49, 1210 (1998).
    [28] S. Fujimoto, K. Nakayama, and M. Yokoyama, Appl. Phys. Lett. 87, 133503 (2005).
    [29] N. Stutzmann, R. H. Friend, and H. Sirringhaus, Science 299, 1881 (2003).
    [30] R. Parashkov, E. Becker, S. Hartmann, G. Ginev, D. Schneider, H. Krautwald, T. Dobbertin, D. Metzdorf, F. Brunetti, C. Schildknecht, A. Kammoun, M. Brandes, T. Riedl, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 82, 4579 (2003).
    [31] D. X. Wang, Y.Tanaka, M. Iizuka, S. Kuniyoshi, K. Kudo, and K. Kanaka, Jpn. J. Appl. Phys. 38, 256 (1999).
    [32] Y. Watanabe and K. Kudo, Appl. Phys. Lett. 87, 223505 (2005).
    [33] C. D. Dimitrakopoulos and Patrick R. L. Malenfant, Adv. Matt. 14, 99 (2002).
    [34] J. M. Shaw and P. F. Siedler, IBM J. Res. DeV. 45, 3 (2001).
    [35] Antonio Facchetti, materialstoday 10, 28 (2007).
    [36] Robert A. Street, Adv. Mater. 21, 1(2009).
    [37] F. Eder, H. Klauk, M. Halik, U. Zschieschag, G. Schmid, and C. Deh, Appl. Phys. Lett. 84, 2673 (2004).
    [38] T. W. Kelly, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, Mater. Res. Soc. Symp. Pro. 771, L6.5.1 (2003).
    [39] Hill, I. G.; Kahn, A. Proc. SPIE 3476, 168 (1998).
    [40] de Leeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F. Synth. Met. 87, 53 (1997).
    [41] R. Haddon, A. Perel, R. Morris, T. Palstra, A. Hebard, R. Fleming, Appl. Phys. Lett. 67, 121 (1995).
    [42] T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. M. Ramil, H. Sitter, M. Colle, D. M. de Leeuw, Appl. Phys. Lett. 89, 213504 (2006).
    [43] X. H. Zhang, B. Kippelen, Appl. Phys. Lett. 93, 133305 (2008).
    [44] C. F. Sung, D. Kekuda, L. F. Chu, Y. Z. Lee, F. C. Chen, M. C. Wu, and C. W. Chu, Adv. Matt. 21, 4845 (2009).
    [45] M. A. Lampert, and P. Mark, “Current Injection in Solids”, Academic Press, New York, 1970.
    [46] M.Pope, and C. E. Swenberg, “Electronic processes in organic crystals and polymers”, Oxford University Press, Oxford, 1999.
    [47] N. F. Mott, and R. W. Gurney, “Electronic processes in ionic crystals, Clarendon Press”, Oxford, 1940.
    [48] M. Sze, “Physics of semiconductor devices”, New York : Wiley, 1981.
    [49] J. Nishizawa, Tech. Digest IEEE Elect. Dev. Mat. 144 (1972).
    [50] J. I. Nishizawa, T. Terasaki and J. Shibata, IEEE Trans. Electron Dev. 22, 185 (1975).
    [51] K. K. Ng, “Complete guide to semiconductor devices”, IEEE Press, New York, 2002.
    [52]H. Ogawa, A. Abe, T. Kajiwara, Electronics Lett 11, 223 (1975).
    [53]K. Yyamaguchi, T. Toyabe and H. Kodera, IEEE Trans. Electron Dev. ED-22, 1047 (1975).
    [54]Y. Mochida, J. I. Nishizawa, T. Ohmi, R. K. Gupta, IEEE Trans. Electron Dev. ED-25, 761 (1978).
    [55] R. K. Gupta, Solid-State Electron, 23, 1011 (1980).
    [56] M. Atala and D. Kahng, IEEE Trans. Electron Dev. ED-9, 507 (1962).
    [57] D. V. Geppert, Proc. IRE 50, 1527 (1962).
    [58]E. Rosencher, S. Delage, Y. Campidelli and F. A. d’Avitaya, Electron. Lett. 20, 762 (1984).
    [59] E. Rosencher, P. A. Badoz, J. C. Pfister, F. A. d’Avitaya, G. Vincent and S. Delage, Appl. Phys. Lett. 49, 271 (1986).
    [60] J. C. Hensel, A. F. J. Levi, R. T. Tung and J. M. Gibson, Appl. Phys. Lett. 47, 151 (1985).
    [61]S. Luryi, “Hot-electron injection and resonant-tunneling heterojunction, devices”, in F. Capasso and G. Margaritondo, Eds., Heterojunction band discontinuities: Physics and device applications, Elsevier Science, New York, 1987.
    [62] E. Rosencher, F. A. d’Avitaya, P. A. Badoz, C. d’Anterroches, G. Glastre, G. Vincent and J. C. Pfister, Proc. Mater. Res. Soc. Symp. 91, 415 (1987).
    [63] S. R. Forrest, J. Am. Chem. Soc. 97, 1793 (1997).
    [64] R. Schlesser,” Organic electro-optic crystals and thin films: optical characterization and molecular bean epitaxy”, PhD thesis, ETH Zurich 1996.
    [65] S. R. Forrest, J. Am. Chem. Soc. 97, 1793 (1997).
    [66] D. L. Smith, “Thin-Film Deposition: Principle and Practice”, McGraw-Hill, New York, 1995.
    [67] W. Flack, D. Soong, A. Bell, and D. Hess, J. Appl. Phys. 56, 1199 (1984).
    [68] H. U. Krebs, “Polymer thin films, Lecture notes”, p. 20, 2004.
    [69] G. Binnig, C. F. Quated, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    [70] G. Bing, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    [71] T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, J. Vac. Sci. A vol.8, 3386 (1990).
    [72] http://www.chem.qmul.ac.uk/surfaces/scc/scat5_3.htm
    [73] ED. A.J.C. Wilson, “International Tables for Crystallography”, Dordrect Kluwer Academic Pub. For International Union of Crystallography, 1995.
    [74] L. S. Birks, X-Ray spectrochemical analysi, 2nd ed. New York: Interscience, 1969.
    [75] B. D. Cullity and S. R. Stock, “Elements of X-ray diffraction”, Upper Saddle River, NJ : Prentice Hall, 2001.
    [76] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett. 18, 606 (1997).
    [77] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science 283, 822 (1999).
    [78] G. Wang, D. Moses, and A. J. Heeger, H. M. Zhang, M. Narasimhan, and R. E. Demaray, J. Appl. Phys. 95, 316 (2004).
    [79] L. A. Majewski, M. Grell, S. D. Ogier, and J. Veres, Organic Electron. 4, 27 (2004).
    [80] F. C. Chen, C.S. Chuang, Y. S. Lin, L. J. Kung, T. H. Chen, and H. P. Shieh, Organic Electron. 7, 435 (2006).
    [81] R. Schroeder, L. A. Majewski, and M. Grell, Adv. Mater. 17, 1535 (2005).
    [82] L. A. Majewski and R. Schroeder, M. Grell, Adv. Mater. 17, 192 (2005).
    [83] D. K. Hwang, C. S. Kim, J. M. Choi, K. Lee, J. H. Park, E. Kim, H. K. Baik, J. H. Kim, and S. Im, Adv. Mater. 18, 2299 (2006).
    [84] K. Shin, C. W. Yang, S. Y. Yang, H. Jeon., and C. E. Park, Appl. Phys. Lett. 88, 072109 (2006).
    [85] L. Yan, C. M. Lopez, R. P. Shrestha, E. A. Irene, A. A. Suvorova, M. Saunders, Appl. Phys. Lett. 88, 142901 (2006).
    [86] I. C. Ho, Y. Xu J. D. Mackenzie, J. Sol. Gel. Scie. and Tech. 9, 295 (1997).
    [87] H. Klauk, M. Halik, U. Zschieschang, F. Eder, G. Schmid, and C. Dehm, Appl. Phys. Lett. 82, 4175 (2003).
    [88] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, Appl. Phys. Lett. 85, 4400 (2004).
    [89] S. R. Forrest , Nature 428, 911 (2004).
    [90] Jan Anton Koster L, Wouter J van Strien, Waldo Beek J E and W. M. Blom, Adv. Funct. Mater. 17, 1297 (2007).
    [91] K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho and A. J. Heeger A J, Adv. Mater. 19 2445 (2007).
    [92] T. B. Singh, F. Meghdadi, S. Gunes, N. Marjanovic, G. Horowitz, F. Lang, S. Bauer and N. S. Sariciftci, Adv. Mater. 17, 2315 (2005).
    [93] H. H. Hsieh and C. C. Wu, Appl. Phys. Lett. 89, 041109 (2006).
    [94] J. I. Song, J. S. Park, H. Kim, Y. W. Heo, J. H. Lee and J. J. Kim, Appl. Phys. Lett. 90, 022106 (2007).
    [95] R. L. Hoffman, Solid-State Electron. 50, 784 (2006).
    [96] T. Miyasako, M. Senoo and E. Tokumitsu, Appl. Phys. Lett. 86, 162902 (2005).
    [97] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004).
    [98] L. Wang , M. H. Yoon, G. Lu, Y. Yang, A. Facchetti and T. J. Marks T J, Nature Mater. 5, 893 (2006).
    [99] H. H. Hsieh and C. C. Wu, Appl. Phys. Lett. 91, 013502 (2007).
    [100] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya and H. Hosono, Appl. Phys. Lett. 90, 242114 (2007).
    [101] A. L. Deman and J. Tardy, Org. Electron. 6, 78 (2005).
    [102] E. Kuwahara, H. Kusai, T. Nagano, T. Takayanagi and Y.Kubozono, Chem. Phys. Lett. 413, 379 (2005).
    [103] Y. Wang and M. Lieberman, Langmuir 19, 1159 (2003).
    [104] C. Y. Kagan and P. W. E. Andry,”Thin Film Transistors”, New York: Dekker, p 87, 2003.
    [105] B. Y. Oh, M. C. Jeong, M. H. Ham and J. M. Myoung, Semicond. Sci. Technol. 22, 608 (2007).
    [106] Dhananjay and S. B. Krupanidhi, J. Appl. Phys. 101, 123717 (2007).
    [107] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este and M. Rider, J. Appl. Phys. 53 1193 (1982).
    [108] A. Madan and M. P. Shaw, in The Physics and Applications of Amorphous Semiconductor, Academia, San Diego, p. 297, 1988.
    [109] H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, D. C. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron. 47, 297 (2003).
    [110] K. Kudo, M. Iizuka, S. Kuniyoshi, and K. Tanaka, Thin Solid Films 393, 362 (2003).
    [111] T. M. Ou, S. S. Cheng, C. Y. Huang, M. C. Wu, I. M. Chan, S. Y. Lin, and Y. J. Chan, Appl. Phys. Lett. 89, 183508 (2006).
    [112] M. S. Meruvia, I. A. Hummelgen, M. L. Sartorelli, A. A. Pasa, and W. Schwarzacher, Appl. Phys. Lett. 84, 3978 (2004).
    [113] K. I. Nakayama, S. Y. Fujimoto, and M. Yokoyama, Appl. Phys. Lett. 82, 4584 (2003).
    [114] Y. Yang and A. J. Heeger, Nature 372, 344 (1994).
    [115] Y. C. Chao, M. H. Xie, M. Z. Dai, H. F. Meng, S. F. Horng, and C. S Hsu, Appl. Phys. Lett. 92, 093310 (2008).
    [116] C. Y. Yang, T. M. Ou, S. S. Cheng, M. C. Wu, S. Y. Lin, I. M. Chan, and Y. J. Chan, Appl. Phys. Lett. 89, 183511 (2006).
    [117] L. P. Ma and Y. Yang, Appl. Phys. Lett. 85, 5084 (2004).
    [118] S. H. Li, Z. Xu, L. P. Ma, and Y. Yang, Appl. Phys. Lett. 91, 083507 (2007).
    [119] K. Nakayama, S. Fujimoto, and M. Yokoyama, Appl. Phys. Lett. 88, 153512 (2006).
    [120] Y. C. Chao, S. L. Yang, H. F. Meng, and S. F. Horng, Appl. Phys. Lett. 87, 253508 (2005).
    [121] A. K.Mahapatro and S.Ghosh, Appl. Phys. Lett. 80, 4840 (2002).
    [122] S. S. Cheng, C. Y. Yang, Y. C Chuang, C. W. Ou, M. C. Wu, S. Y. Lin, Y. J. Chan, Appl. Phys. Lett. 90, 153509 (2007).
    [123] A. D. Neamen, “in Semiconductor Physics and Devices: Basic Principles”, McGraw-Hill, Dubuque, 2003.
    [124] C. Goh, R. Chiatzun, R. J. Kline, and M. D. McGehee, E. N. Kadnikova and J. M. J. Fréchet, Appl. Phys. Lett. 86, 122110 (2005).
    [125] C. Melzer, E. J. Koop, V. D. Mihailetchi, and P. W. M. Blom, Adv. Funct. Mater. 14, 865 (2004).
    [126] H. Klauk, U. Zschieschang, and M. Halik, Jour. of Appl. Phys. 102, 074514 (2007).
    [127] K. H. Lee, J. M. Choi, S. Im, B. H Lee, K. K. Im, M. M. Sung, and S. Lee, Appl. Phys. Lett. 91, 123502 (2007).
    [128] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science 283 (1999) 822.
    [129] Y. Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, Nature Nano. 2, 784 (2007).
    [130] M. D. Austin and S. Y. Chou, Appl. Phys. Lett. 81, 4431 (2002).
    [131] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 8, 11 (1999).
    [132] C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87, 193508 (2005).
    [133] L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
    [134] G. L. Frey, K. J. Reynolds, and R. H. Friend, Adv. Mater. 14, 265 (2002).
    [135] L. S. Roman, W. Mammo, L. A. A. Pettersson, M. R. Andersson, and O. Inganäs, Adv. Funct. Mater. 10, 774 (1998).
    [136] N. J. Watkins, L. Yan, and Y. L Gao, Appl. Phys. Lett. 80, 4384 (2002).
    [137] H. Ishii, K. Sugiyama, E. Ito, and Kazuhiko Seki, Adv. Mater. 11, 605 (1999).
    [138] G. D. Giuseppe and J. R. Selman, J. Electronanal. Chem. 559, 31 (2003).
    [139] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, and J. Chastin, in Handbook of X-ray Photoelectron Spectroscopy, Perkin–Elmer Corporation, Physical Electronics Division, Minnesota, 1992.
    [140] B. Crone, A. Dodabalapur, Y.Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H.E. Katz, W. Li, Nature (London) 403, 521 (2000).
    [141] H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, Nature (London) 445, 745 (2007).
    [142] M.M. Ling, Z. Bao, P. Erk, M. Koenemann, M. Gomez, Appl. Phys. Lett. 90 , 093508 (2007).
    [143] T.D. Anthopoulos, D.M. deLeeuw, E. Cantatore, S. Setayesh, E.J. Meijer, C. Tanase, J.C. Hummelen, P.W.M. Blom, Appl. Phys. Lett. 85, 4205 (2004).
    [144] J.H. Schon, S. Berg, Ch. Kloc, B. Batlogg, Science 287, 1022 (2000).
    [145] H.E. Katz, A.J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y.Y. Lin, A. Dodabalapur, Nature 404, 478 (2000).
    [146] S.S. Cheng, Y.C. Chuang, D. Kekuda, C.W. Ou, M.C. Wu, C.W. Chu, Adv. Mater. 21, 1860 (2009).
    [147] K. Nakayama, S. Fujimoto, M. Yokoyama, Org. Electron. 10, 543 (2009).
    [148] R.N. Stuart, F. Wooten, W.E. Spicer, Phys. Rev. Lett. 10, 7 (1963).
    [149] S.S. Cheng, J.H. Chen, G.Y. Chen, D. Kekuda, M.C. Wu, C.W. Chu, Org. Electron. 10, 1636 (2009).
    [150] M. Yi, S. Yu, C. Feng, T. Zhang, D. Ma, M.S. Meruvia, I.A. Hummelgen, Org. Electron. 8, 311 (2008).
    [151] N. Chand, R. Fischer, H. Morkoc, Appl. Phys. Lett. 47, 313 (1985).
    [152] A.F.J. Levi, T.H. Chui, Appl. Phys. Lett. 51, 984 (1987).
    [153] K.C. Smith, A.S. Sedra, “Microelectronic Circuits”, Oxford, New York, 1998.
    [154] A. A. Virkar , S. Mannsfeld , Z. Bao , and N. Stingelin, Adv.Mater. 2010, 22, 3857.
    [155] C. Dimitrakopolous and R. Malenfant, Adv. Mater. 2002, 14, 99.
    [156] D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V.
    Necliudov, and M. S. Shur, J. Appl. Phys. 2006, 100, 024509.
    [157] A. Hoppe, J. Seekamp, T. Balster, G. Götz, P. Bäuerle, and V. Wagner, Appl. Phys. Lett. 2007, 91, 132115.
    [158] T. H. Chiu, W. T. Tsang, and A. F. J. Levi, Electron. Lett. 1987, 17, 917.
    [159] C. C. Wu and S. S. Lu, IEEE Electron Ddvice Lett. 1992, 13, 418.
    [160] A. M. C. Ng, A. B. Djurisic, K. H. Tam, K. W. Cheng, W. K. Chan, H. L. Tam, K. W. Cheah, A. W. Lu, J. Chan, A. D. Rakic, Opt. Com. 2008, 281, 2498.
    [161] Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, Appl. Phys. Lett. 2007, 92, 113304.
    [162] H. Peisert, M. Knupfer, T. Schwieger, G. G. Fuentes, D. Olligs, J. Fink, and Th. Schmidt, J. Appl. Phys. 2003, 93, 9683.
    [163] A. Miller, E. Abrahams, Phys. Rev.1960, 120, 745.
    [164] I. H. Campbell and D. L. Smith, Appl. Phys. Lett.1999, 74, 561.
    [165] A. K. Mahapatro and S. Ghosh, Appl. Phys. Lett.2002, 74, 4840.
    [166] J. X. Tang, C. S. Lee, and S. T. Lee, J. Appl. Phys.2007, 101, 064504.
    [167] S. Kera, Y. Yabuuchi, H. Yamane, H. Setoyama, K. K. Okudaira, A. Kahn, and N. Ueno, Phys. Rev. B 2004, 70, 085304.
    [168] A. F. J. Levi and T. H. Chid, Physica Scripta.1988, T23, 227.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE