研究生: |
許惠婷 Hui-Ting Hsu |
---|---|
論文名稱: |
表面張力驅動之陣列式微型混合器之研製 The Design and Research of Passive Micromixer Arrays |
指導教授: |
曾繁根
Fan-gang Tseng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 混合器 、濃度梯度 、微流體 、微機電 |
外文關鍵詞: | mixer, concentration gradient, microfluid, MEMS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計一陣列式微型混合器,以表面張力做為驅動力,透過
特殊開放式的微流道網絡與混合腔體設計,利用壓力差完成有效定
量、同步且快速的混合效果。晶片中特殊流道的網絡設計,可定量不
同體積比例的二欲混合流體,並利用電濕潤法與流道梯度設計造成的
壓力差將其同時、反向地引流至混合腔體內,其後,利用兩反向流體
造成的介面作用力,在陣列式的混合腔體(250x250x60μm3) 中生成三維渦流,達到體積定量、快速且陣列式同步混合效果。
研究中探討四種不同腔體次結構設計(基礎型、橫閂型、導角型、
改良式橫閂型)與三代陣列式微型混合器對混合效率的影響。逆時針
長橫栓的次結構設計混合效率較佳,其可限制流體進口長度與混合區
域、影響混合介面長度,使兩液體在160ms 內造成均勻且快速的混合;搭配第三代陣列式微型混合器的外部定量設計,可一次多工地完成不同濃度樣品的混合需求。
研究中利用微粒子顯像測速儀觀測混合腔體內部的流場,搭配
CFD-RC 軟體的模擬結果,了解液體在腔體內三維渦流的形成狀況及
物理機制。此外,透過高速流體攝影系統與螢光樣品實驗,了解混合效率。
[1]. Blankenstein, G.. et al.,”Modular Concept of a Laboratory on a Chip for Chemical and Biochemical Analysis,” Biosensors & Bioelectronics, Vol.13, 1998, pp. 427-438.
[2]. Khandurina, J., et al., ”Bioanalysis in Microfluidic Devices,” Journal of Chromatograph A, Vol. 943, 2002, pp.159-183.
[3]. Beebe, D. J. et al., ”Microfluidics and Bioanalysis Systems:Issues and Examples,” Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology, Vol. 20, 1998, pp. 1692-1697.
[4]. Chiem N. et al., “Microfluidic System for Clinical Diagnostics,” Proceedings of International Conference on Solid-State Sensors and Actuators, Vol. 1, 1997, pp. 183-186.
[5]. Liang-Hsuan Lu, Kee Suk Ryu, and Chang Liu,” A Magnetic Microstirrer and Array for Microfluidic Mixing.” Journal of Microelectromechanical Systems, Vol. 11, No. 5, 2002
[6]. Vibhu Vivek, Yi Zeng and Eun Sok Kim, “Novel Acoustic Wave Micromixer.”
[7]. Y. K. Lee, P. Tabeling, C. Shih and C.M. Ho, "Characterization of a MEMS-Fabricated Mixing Device," Proceedings of MEMS, ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, Nov, pp.505-511, 2000.
[8]. Y. K. Lee, J. Deval, P. Tabeling, and C.M. Ho, “Chaotic Mixing in Electrokinetically Pressure Driven System Flows,” IEEE 14th International Conference on Micro Electro Mechanical System (MEMS 2001), Interlaken, Switzerland, pp.483-486, 2001.
[9]. Jones, S. and Aref, H., “Chaotic advection in pulsed source-sink systems”, Physics of Fluids, 31: 469- 85. 1988
[10] Jens Beanebjerg, et al., ”Fast Mixing by Lamination.” IEEE, 1996
[11] R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H Aref,. and D.J Beebe, Passive Mixing in a Three-Dimensional Serpentine Microchannel, Journal of Microelectromechanical Systems, Vol.9, 190-197(2000)
[12] Bing He, Brian J. Burke, Xiang Zhang, Roujian Zhang, and Fred E. Regnier*, ”A Picoliter-Volume Mixer for Microfluidic Analytical Systems.” Anal. Chem., Vol. 73, No. 9,1942-1947, 2001
[13] Joel Voldman, Martha L. Gray, and Martin A. Schmidt, “An Integrated Liquid Mixer/Valve.” Journal of Microelectromechanical systems,vol. 9, no. 3, 2000, pp. 295-302.
[14] T.J. Johnson, D. Ross, and L.E. Locascio. ”Rapid microfluidic mixing.” Analytical Chemistry, 74(1):45–51, January 2002.
[15] A.D Stroock, K.W.Dertinger, A. Ajdari, I. Mezic, H.A. Stone, and G. Whitesides, Chaotic Mixer for Microchannels, Science, Vol. 295, 647-651(2002)
[16] Noo L. J. et al, Langmuir, vol. 16, 2000, pp. 8311-8316
[17] Stephan K. W. et al, PNAS, Vol. 99, 2002, pp. 12542-12547
[18] Matthew A. H. et al, Sensors and Actuators B, Vol. 92, 2003, pp. 199-207
[19] E. Kataoka, et al., “Patterning liquid flow on the moisroscopic scale”, Nature, Vol. 402, pp. 794-797, 1999.
[20] S. Daniel, et al., “Fast drop movements resulting from the phase change on a gradient surface”, Science, Vol. 291, pp. 633-636, 2001.
[21] G.G. Roberts, et al., “Langmuir blodgett film”, Plenum Press, New York, pp. 17, 1990.
[22] A. Ulman, “Introduction to organic thin films from langmuir-blodgett to self-assembly”, Academic Press, New York, pp. 237, 1991.
[23] M. Washizu, “Electrostatic actuation of liquid droplets for microreactor applications”, IEEEtrans. Ind. App., Vol. 34, pp. 732-737, 1998.
[24] A. Torkkeli, “Electrostatic transportation of water droplets on superhydrophobic surface”, IEEE 14th Int. Conf. MEMS (MEMS 01’), Interlaken, Switzerland, pp. 475-478, Jan. 2001.
[25] M. Thomas, et al., On Size and Life.
[26] V. Steven et al., Life's Devices: the physical world of animals and plants.
[27] Fung, Y. C., Biomechanics:motion, flow, stress, and growth.
[28] Frank M. White, Fluid Mechanics. 2nd Ed., New York, NY: McGraw-Hill, 1986.
[29] Ryusuke AOYAMA, Minoru DEKI, Jong Wook HONG, Teruo FUJII, and Isao ENDO, “Novel liquid injection method with wedge-shaped microchannel on a PDMS microchip system for diagnostic analyses,” The 11th International Conference on Solid-State Sensors and Actuators (Transducers ’01), Munich, Germany, June, 2001, pp. 1232-1235.
[30] P. F. Man, C. H. Mastrangelo, M.A. Burns, and D.T. Burke, “Microfabricated Capillarity-driven Stop valve and sample injector.” ,Journal of IEEE, PP 45-51, 1998.
[31] F. G. Tseng, I. D. Yang, K. H. Lin, Y. T. Tseng, and C. C. Chieng, “Shape effect on fluid filling for microfabricated reservoir”, μTAS 2001, Monterey, CA., U.S.A., October, 2001.
[32] S. Devasenathipathy, J.G. Santiago, S.T. Wereley, C.D. Meinhart, K. Takehara, ”Particle imaging techniques for microfabricated fluidic systems.” Experiments in Fluids, Vol. 34, pp. 504–514, 2003
[33] J. G. Santiago et al ., “A Particle image velocimetry system for microfluidics ” , Experiments in Fluids, Vol. 25(1998)316~319
[34] C. D. Meinhart, S. T. Wereley, J. G. Santiago, ”PIV Measurements of a Microchannel flow.” Experiments in Fluids, Vol. 27, pp.414-419, 1999.
[35] C. D. Meinhart, Hongsheng Zhang,” The Flow Structure Inside a Microfabricated Inkjet Printhead.” Journal of Microelectromachanical System, Vol. 9, No. 1, 2000
[36] 由陳玉芬博士協助模擬完成。