簡易檢索 / 詳目顯示

研究生: 林俊杰
論文名稱: 質子交換膜燃料電池MEA模組非等溫兩相流模擬分析
A non-isothermal two-phase MEA model for proton exchange membrane fuel cell
指導教授: 林昭安
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 74
中文關鍵詞: 燃料電池
外文關鍵詞: fuel cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In the present study, fuel cell performance on the MEA model for PEMFC is investigated numerically. The computational domain includes the gas diffusion layer, the catalyst layer and the membrane. The modeling framework is assuming that the transport process is diffusion controlled and the convection transport is neglected. Both the single phase and two-phase flows are studied.
    In the practical application of the PEM fuel cell, condensed water would exist at high current density. The effect of liquid water is to reduce the diffusivity of the gas phase species. If the pores in a porous media are occupied by liquid water, the gas phase species can not reach the catalyst layer. In past studies, the effective surface area for reactions is modified using the correction factor (1-s). The predicted results, shows that the
    predicted limiting current is too high compared with the
    measurements by Liu et al.[5]. To improve the porosity
    capability, in the present study, the porosity is modified using the correction factor (1-s^(2/3)). The rationale is that because s is defined as the ratio of the volume of liquid water to the volume of void space. When the liquid water is generated by the chemical reaction, it blocks the void cross-sectional area of the porous diffuser, i.e. s^(2/3). Thus, when s increases, the porosity decreases. The predicted IV curves using the adopted porosity modification compare favorably with the measurements. The model is further applied to simulate non-isothermal condition. As expects, the performances of the non-isothermal cases exceed those under the iso-thermal conditions.


    Contents Abstract iii Nomenclature iv List of ‾gures vii 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Mathematical Formulations 13 2.1 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Diffusion controlled transport Equation and Boundary Conditions for single phase flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.1 Equation for the Hydrogen and Oxygen Mass Fraction . . . . 20 2.3.2 Equation for the Water Vapor Fraction . . . . . . . . . . . . . 21 2.3.3 Equation for the Thermal transports . . . . . . . . . . . . . . 22 2.3.4 Equation for the electrolyte phase potential . . . . . . . . . . 23 2.3.5 Equation for current density . . . . . . . . . . . . . . . . . . . 24 2.4 Diffusion controlled transport Equation and Boundary Conditions for two phase flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Equation for the Hydrogen and Oxygen Mass Fraction . . . . 24 2.4.2 Equation for the Water Vapor Fraction . . . . . . . . . . . . . 25 2.4.3 Equation for the Saturation Level . . . . . . . . . . . . . . . . 27 2.4.4 Equation for the Thermal transports . . . . . . . . . . . . . . 28 2.4.5 Equation for the electrolyte phase potential . . . . . . . . . . 29 2.4.6 Equation for current density . . . . . . . . . . . . . . . . . . . 29 3 Numerical Implementation 32 3.1 Discretization of the transport equation . . . . . . . . . . . . . . . . . 32 3.1.1 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Tridiagonal-matrix Algorithm . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 Sequence of TDMA . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Numerical procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Results and Discussion 36 4.1 Single phase flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.1 Effect of cathode GDL thickness . . . . . . . . . . . . . . . . . 38 4.1.2 Effect of anode GDL thickness . . . . . . . . . . . . . . . . . . 38 4.1.3 Effect of membrane thickness . . . . . . . . . . . . . . . . . . 38 4.1.4 Effect of ionic conductivity . . . . . . . . . . . . . . . . . . . . 39 4.1.5 Effect of exchange current density . . . . . . . . . . . . . . . . 39 4.1.6 Effect of temperature . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.7 Effect of thermal conductivity . . . . . . . . . . . . . . . . . . 40 4.2 Two phase flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.1 Different gas diffuser porosity . . . . . . . . . . . . . . . . . . 41 5 Conclusion and future works 69 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    Bibliography
    [1] T. E. Springer, T. Rockward, T. A. Zawodzinski, S. Gottesfeld, "Model for
    Polymer Electrolyte Fuel Cell Operation on Reformate Feed," J. Electrochem.
    Soc. 148 (1), A11 (2001)
    [2] C. Marr, X. Li, "Composition and performance modeling of catalyst layer in a
    proton exchange membrane fuel cell," J. Power Source 77, 17 (1999)
    [3] ZN. Farhat, "Modeling of catalyst layer microstructure re‾nement and catalyst
    utilization in a PEM fuel cell," J. Power Source 138, 68 (2004)
    [4] L. You, H. T. Liu, "A parametric study of the cathode catalyst layer of PEM
    fuel cells using a pseudo-homogeneous model," Int. J. Hydrogen Energy 26,
    991 (2001)
    [5] L. Wang, A. Husar, T. Zhou, H. T. Liu, "A parametric study of PEM fuel cell
    performances," Int. J. Hydrogen Energy 28, 1263 (2003)
    [6] M. G. Santarelli, M. F. Torchio, "Experimental analysis of the effects of
    operating variables on the performance of a single PEMFC",Energy Conversion
    and Management 48, 40 (2007)
    [7] H. T. Liu, T. Zhou, P. Cheng, "Transport Phenomena Analysis in Proton
    Exchange Membrane Fuel Cells," J. Heat Transfer 127, 1363 (2005)
    [8] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, "Polymer Electrolyte Fuel
    Cell Model," J. Electrochem. Soc. 138 (8), 2334 (1991)
    [9] V. Gurau, F. Barbir, H. T. Liu, "An Analytical Solution of a Half-Cell Model
    for PEM Fuel Cells," J. Electrochem. Soc. 147 (7), 2468 (2000)
    [10] H. S. Chu, C. Yeh, F. Chen, "Effects of porosity change of gas diffuser on
    performance of proton exchange membrane fuel cell," J. Power Source 123, 1
    (2003)
    [11] R. Roshandel, B. Farhanieh, E. Saievar-Iranizad, "The effects of porosity
    distribution variation on PEM fuel cell performance," Renewable Energy 30,
    1557 (2005)
    [12] J. H. Nam, M. Kaviany, "Effective diffusivity and water-saturation distribution
    in single- and two-layer PEMFC diffusion medium," Int. J. heat and mass
    transfer 46, 4595 (2003)
    [13] G. Lin, W. He, T. V. Nguyen, "Modeling Liquid Water Effects in the
    Gas Diffusion and Catalyst layers of the Cathode of a PEM Fuel Cell," J.
    Electrochem. Soc. 151 (12), A1999, (2004)
    [14] W. He, J. S. Yi, T. V. Nguyen, "Two-Phase Flow Model of the Cathode of
    PEM Fuel Cells Using Interdigitated Flow Fields," AIChE Journal 46 (10),
    2053 (2000)
    [15] Z. H. Wang, C. Y. Wang, K. S. Chen, "Two-phase flow and transport in the
    air cathode of proton exchange membrane fuel cells," J. Power Source 94, 40
    (2001)
    [16] Ugur Pasaogullari and C. Y. Wang, "Liquid Water Transport in Gas Diffusion
    Layer of Polymer Electrolyte Fuel Cell," J. Electrochem. Soc. 151, A399 (2004)
    [17] H. Sun, H.T. Liu, L. Guo, "PEM fuel cell performance and its two-phase mass
    transport," J. Power Sources 143, 125 (2005)
    [18] Hua Meng, Chao-Yang Wang, "Large-scale simulation of polymer electrolyte
    fuel cells by parallel computing," Chemical Engineering Science 59, 3331 (2004)
    [19] Sukkee Um, C. Y. Wang, "Three-dimensional analysis of transport and
    electrochemical reactions in polymer electrolyte fuel cells," J. Power Source
    125, 40 (2004)
    [20] Hua Meng and Chao-Yang Wang, "Model of Two-Phase Flow and Flooding
    Dynamics in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc. 152 (9),
    A1733 (2005)
    [21] T. F. Fuller, J. Newman, "Water and Heat Management Model for Solid-
    Polymer-Electrolyte Fuel cells," J. Electrochem. Soc. 140 (5), 1218 (1993)
    [22] A. Rowe, Xi. Li, "Mathematical modeling of Proton exchange Membrane Fuel
    cells," J. Power Sources 102, 82 (2001)
    [23] D. Cheddie, N. Munroe, "Mathematical model of a PEMFC using a PBI
    membrane," E. Conversion and Management 47, 1490 (2006)
    [24] D. Cheddie, N. Munroe, "Analytical correlations for intermediate temperature
    PEM fuel cells," J. Power Sources 160, 299 (2006)
    [25] T. V. Nguyen, R. E. White, "AWater and Heat Management Model for Proton-
    exchange-Membrane Fuel cells," J. Electrochem. Soc. 140 (8), 2178 (1993)
    [26] J. S. Yi, T. V. Nguyen, "An Along-the-Channel Model for Proton exchange
    Membrane Fuel cells," J. Electrochem. Soc. 145 (4), 1149 (1998)
    [27] J.J. Hwang, "Thermal-Electrochemical Modeling of a Proton Exchange
    Membrane Fuel Cell," J. Electrochem. Soc. 153 (2), A216 (2006)
    [28] H. Ju, H. Meng, C. Y. Wang, "A single-phase, non-isothermal model for PEM
    fuel cells," I. J. Heat and Mass Transfer 48, 1303 (2005)
    [29] Y. Wang, C. Y. Wang, "A Nonisothermal, Two-Phase Model for Polymer
    Electrolyte Fuel Cells," J. Electrochem. Soc. 153 (6), A1193 (2006)
    [30] C.C. Chen and C.A. Lin, "A non-isothermal two-phase flow at cathode of PEM
    fuel cell," International Tsing Hua University, Taiwan (2007)
    [31] C. Y. Wang, P. Cheng, "A multiphase mixture model for multiphase,
    multicomponent transport in capillary porous media-I. Model development,"
    Int. J. Heat Transfer 39 (17), 3607 (1996)
    [32] C. Y. Wang, P. Cheng, "A multiphase mixture model for multiphase,
    multicomponent transport in capillary porous media-II. Numerical simulation
    of the transport of organic compounds in the subsurface," Int. J. Heat Transfer
    39 (17), 3619 (1996)
    [33] Vladimir Gurau, Hongtan Liu, and Sadik Kakac, "Two-Dimensional Model for
    Proton Exchange Membrane Fuel Cells," AIChE J 44, 2410 (1998)
    [34] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, Jhon Wiley
    & Sons, New York, 1960
    [35] S. Motupally, A.J. Becker, J.W. Weidner, "Diffusion of water in Nafion 115
    membranes," J. Electrochem. Soc. 147 (9), 3171 (2000)
    [36] A. Parthasarathy, S. Srinivsan, A. j. Appleby, "Temperature Dependence of the
    Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion Interface-A
    Microelectrode Investigation," J. Electrochem. Soc. 139 (9), 2530 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE