研究生: |
張國瀚 Chang, Kuo-Han |
---|---|
論文名稱: |
相變型散熱元件之性能量測系統之研發 The Development of the Performance Measuring System for the Phase Change Heat Transport Device -- Heat pipe, Vapor Chamber and Defrost Plate |
指導教授: |
林唯耕
Lin, Wei-Keng |
口試委員: |
高良書
白寶實 林唯耕 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 均溫板 、熱管 、熱阻 、擴散熱阻 |
外文關鍵詞: | vapor chambers, heat pipe, thermal resistance, spread thermal resistance |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為設計一種多功能性之相變型散熱元件之性能量測系統,可量測熱管、均溫板及解凍板之性能。並將熱電致冷器(TEC)運用在此性能測試系統之冷凝部,可以精準並快速的對冷凝部及絕熱部做溫控,以縮短實驗的時間並提昇性能量測的準確性。
實驗量測之均溫板尺寸為50x50mm,厚度各為3.5、6mm,將均溫板置於蒸發部之加熱銅塊及冷凝模組間。其均溫板性能表現藉由熱阻之量測以做觀察,冷凝部於自然對流下,其加熱瓦特數為1W至5W。而在強制對流下,將其冷凝部溫度維持在操控溫度,並加熱至40W,以觀察其性能表現。
其熱管性能測試結果顯示,以相變型之性能量測系統測試之最大熱傳量與傳統以冷凝水套作為冷凝部之熱管性能測試結果相同,且熱管之熱阻值之重複性實驗誤差值,皆能控制在10%以內,相當準確。均溫板於自然對流下,其軸向熱阻為0.1℃/W,擴散熱阻為0.12℃/W左右,而解凍板軸向熱阻及擴散熱阻分別為0.17℃/W及0.18℃/W左右。
A multipurpose of the performance measuring system for the phase change heat transport device such as heat pipe, vapor chamber and defrost plate was designed in this study. The characteristic of this measuring system was using thermal electrical chip (T.E.C.) as the condenser,which can exactly control the temperature in adiabatic section and condenser section. Therefore, it is effective to reduce the experimenting time and increase the accuracy of performance Test. This paper also present experimental measurement of performance of a vapor chamber (VC), heat pipe and defrost plate. The vapor chamber, with square sides of 50 x 50mm and thickness of 3.5mm and 6mm, was sandwiched between a heater block and a cooling plate located on the evaporator and the condenser surface respectively. The performance of the vapor chamber was investigated by determining the thermal resistance over a heat input range of 1 to 5W in natural convection test with the condenser opens at ambient environment and up to 40W in force convection with the condenser held at constant temperature. The experimental results show that the Maximum heat dissipated ability was the same compare with the new design measuring system and the traditional heat pipe performance measuring system with a water jacket as the cooling condenser. The thermal resistance in natural convection condition for the axial direction was around 0.1℃/W, while the spray thermal resistance was 0.12℃/W. For the defrost plate, the axial thermal resistance was 0.17℃/W and 0.18℃/W for the spray thermal resistance. Keywords: vapor chambers, heat pipe, thermal resistance, spread thermal resistance
1.Kenichi Namba, Naoki Kimura, Jun Niekawa, Yuichi Kimura, Nobuyuki Hashimoto, ” Heat-Pipes for Electronic Devices Cooling and Evaluation of Their Thermal Performance ”, IEEE, InterSociety Conference on Thermal Phenomena, pp.456-459,1998
2.Ioan Sauciuc, “ The Design and Testing of the Super Fiber Heat pipes for Electronics Cooling ”, IEEE, Sixteenth IEEE SEMI-THERM, pp.27-32, 2000
3.V. Maziuk, “Miniature heat-pipe thermal performance prediction tool software development “, Applied Thermal Engineering ,vol.21, pp.559-571, 2001
4.Seok Hwman Moon, “Experimental Study on the Performance of Miniature Heat Pipes With Woven-Wire Wick”, IEEE Transaction on components and packing technologies,24, No. 4, 1521-3331, December 2001.
5.Lanchao Lin, Rengasamy Ponnappan, John Leland “High performance miniature heat pipe” International Journal of Heat and Mass Transfer, Volume 45, Issue 15,pp. 3131-3142,July 2002
6.Kwang-Soo Kim, ” Heat pipe cooling technology for desktop PC CPU ”, Applied Thermal Engineering ,vol.23 ,pp1137-1144,2003
7.Yasumi Sasaki, Yuichi Kimura, Kenichi Namba, ”The ultra-thin sheet-shaped heat pipe “Pera-flex” ”, 13th International Heat Pipe Conference (13th IHPC), pp250-255, 2004.
8.Sameer Khandekar , Manfred Groll, “An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes”, International Journal of Thermal Sciences,vol 43, pp.13–20
9.A. Haddad , R. Boukhanouf & C. Buffone2,“Testing of vapour chamber used in electronics cooling” , WIT Transactions on Engineering Sciences, Vol 53, 2006.
10.R. Boukhanouf , A. Haddad , M.T. North , C. Buffone ,“Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera”, Applied Thermal Engineering vol.26,pp2148–2156.
11.T. Kaya, R. Pérez, C. Gregori, A. Torres “Numerical simulation of transient operation of loop heat pipes” Applied Thermal Engineering, Volume 28, Issues 8-9, pp 967-974 ,June 2008
12.Ioffe, A.F., Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch, London, 1957
13.Goldsmid, H. J., The use of semiconductors in thermoelectric refrigeration, Research Laboratories, The General Electric Co. Ltd, Wembley, Middlesex, 1954
14.Chu, R. C., 2000, “Application of Thermoelectric Cooling to Electric Equipment:A Review and Analysis,’ Semiconductor Thermal Measurement and Management Symposium, pp.1-9, 2000
15.Solbrekken, G. L., K. Yazawa, and A. Bar-Cohen, 2003, Chip Level Refrigeration of Portable Electronic Equipment Using Thermoelectric Devices, Proceedings of InterPack 2003, Maui, HA, Jul 6-11, Paper IPACK2003-35305.
16.Jim Bierschenk, Dwight Johnson, Extending the Limits of Air Cooling with Thermoelectrically Enhanced, Thermal and Thermomechanical Phenomena in Electronic Systems, Vol.1, pp.679-684, 2004
17.Y. Noda, H. Sauciuc, I. Erturk, H, Thermal Performance of Thermoelectric Cooler (TEC) Integrated Heat Sink and Optimizing Structure for Low Acoustic Noise / Power Consumption, Semiconductor Thermal Measurement and Management Symposium, pp.144-151, 2006
18.Reiyu Chein, Thermoelectric cooler application in electronic cooling, Applied Thermal Engineering, Vol.24, pp.2207–2217, 2004
19.B.J. Huang, System dynamic model and temperature control of a thermoelectric cooler, International Journal of Refrigeration, Vol.23, pp.197-207, 2000
20.Tadayon, P., “Thermal Challenge During Micro- processor Testing,” Intel Tech. J., Q3, 2000
21.Frank Kreith, Mark S. Boh “Principles of Heat Transfer 2001 Books/Cole”
22.Maidanik,Y.F.,Vershinin, Kholodov, V., and J. Dolgirev, “Heat Transfer Apparatus,” U.S. Patent No. 4515209, 1985
23.Yunus A. Cengel., 1998 “Heat Transfer”, McGraw-Hill
24.Wei-Keng Lin, Bao-Shi Pei. “A Study on Heat Transfer Effect to the Trapezoid Grooved Heat Pipe in Micro Gravity (I)”, NSC 83- 0401- E007- 008
25.Hung-Wen Lin, Yi-Xiang Zheng, Wei-Keng Lin, Tong-Bou Chang, "An Axial Heat Conduction Model to Predict the Maximum Heat Removed of the Miniature Heat Pipe", Transactions of the Aeronautical and Astronautical Society of the Republic of China, 35, No.4, pp.393-400, 2003
26.Yao-Chen Chan, Hung-Wen Lin, Wei-Keng Lin,” Dynamic Tracing Method to Examine Maximum Heat Dissipate Ability of Heat-Pipe” 13th International Heat Pipe Conference (13th IHPC), pp.311-316, 2004
27.Grubb, K., "CFD Modeling of a Thermal-Base Heat Sink", Thermacore Inc
28.S.Lee,”Calculating Spreading Resistance in Heat Sink, ” Electronics Cooling January, 1998
29.林鴻文, ” 微型熱管系統散熱實驗與最大熱傳量之理論模式建立”,國立清華大學工程與系統科學系碩士論文,2003
30.洪佳煌, ”熱管性能量測平台之靈敏度分析”,國立清華大學工程與系統科學研究所碩士論文,七月2008
31.張文鏵,“以熱電致冷器改善熱管性能量測平台之不穩定性”,國立清華大學工程與系統科學研究所碩士論文,七月2010