簡易檢索 / 詳目顯示

研究生: 林薏雯
Lin, Yi-Wen
論文名稱: Calibration of Asset-Pricing Models by Optimal Importance Sampling
以最佳重點性抽樣對資產訂價模型校準
指導教授: 韓傳祥
Han, Chuan-Hsiang
口試委員:
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 計量財務金融學系
Department of Quantitative Finance
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 44
中文關鍵詞: 蒙地卡羅模擬重點性抽樣選擇權訂價模型校準方法傅立葉序列方法
外文關鍵詞: Monte Carlo simulations, Importance sampling, Option pricing, Calibration, Fourier series method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis consists of two parts. In the first part, we propose some
    computational methods to improve the basic Monte Carlo simulations when
    estimating option prices because of its slow convergence rate. We also prove
    that our importance sampling method is efficient theoretically and numeri-
    cally. And our importance sampling methods is not only suited for European
    options with deterministic volatility and interest rate, but also applied to
    the one with stochastic volatility and interest rate. In the latter case, we
    propose an approximate probability measure to avoid difficulty of compu-
    tation. Numerical proof is shown for these two cases as well.
    In the second part, the simulation methods are applied to model cali-
    bration to option market prices. Since the calibrating procedure is time-
    consuming, the efficient importance sampling method developed in the pre-
    vious stage becomes essential. We use Fourier series method, which is fully
    model-free and nonparametric, to estimate the time series volatility of any
    stochastic underlying process. By calibrating to the market prices, we can
    observe some parameters in the volatility process; speed of mean-reversion,
    volatility of volatility and long-run mean, etc.


    1 Introduction and Literature Review 1 2 Model and Methodology 3 2.1 Basic Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . 3 2.2 Importance Sampling Method . . . . . . . . . . . . . . . . . . . . . 4 3 Pricing Contingent Claims 4 3.1 European Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1.1 Basic Monte Carlo Simulations . . . . . . . . . . . . . . . . 5 3.1.2 Importance Sampling Method . . . . . . . . . . . . . . . . . 6 3.1.3 Proof of Efficiency of Importance Sampling . . . . . . . . . . 9 3.1.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 European Options with Stochastic Volatility . . . . . . . . . . . . . 20 3.2.1 Basic Monte Carlo Simulations . . . . . . . . . . . . . . . . 20 3.2.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . 21 3.2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 European Options with Stochastic Volatility and Interest Rate . . . 25 3.3.1 Basic Monte Carlo Simulations . . . . . . . . . . . . . . . . 25 3.3.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . 25 3.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . 26 4 Fourier Series Method 28 4.1 Fourier Coefficients Computation . . . . . . . . . . . . . . . . . . . 28 4.1.1 First-power Fourier Coefficients Computation . . . . . . . . 29 4.1.2 Second-power Fourier Coefficients Computation . . . . . . . 30 4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Model Calibration 34 5.1 Simulated Data Calibration . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Two-Stage Market Data Calibration . . . . . . . . . . . . . . . . . . 36 5.2.1 Historical Data Calibration . . . . . . . . . . . . . . . . . . 37 5.2.2 Implied Data Calibration . . . . . . . . . . . . . . . . . . . . 40 6 Conclusions 41 Reference 43

    [1] Avellaneda, M. (1998), "Minimum-Relative-Entropy Calibration of Asset
    Pricing Models". International Journal of Theoretical and Applied Finance,
    1, 4, 447-472
    [2] Avellaneda, M. (1998), "The Minimum-Entropy Algorithm and Related
    Methods for Calibrating Asset-Pricing Models". Proceedings of the Interna-
    tional Congress of Mathematicians, Documenta Mathematica, 3, 545-563
    [3] Avellaneda, M., Buff, R., Friedman, C., Grandechamp, N., Kruk, L., and
    Newman, J. (2001), "Weighted Monte Carlo: A New Technique for Calibrating
    Asset-Pricing Models". International Journal of Theoretical and Applied
    Finance, 4, 1-29
    [4] Avellaneda, M., Friedman, C., Holmes, R., and Samperi, D. (1997), "Calibrating
    Volatility Surfaces Via Relative-Entropy Minimization". Applied Math
    Finance, 4, 37-64
    [5] Barucci, E., Malliavin, P. and Mancino, M. E. (2005). "Harmonic Analysis
    Methods for Nonparametric Estimation of Volatility: Theory and Applications:
    Theory and Applications". Stochastic Process and Applications to
    Mathematical Finance, 1-34
    [6] Barucci, E. and Reno, R. (2002). "On Measuring Volatility of Diffusion Process
    with High Frequency Data". Economics Letters, 74, 371-378
    [7] Black, F. and Scholes, M.(1973), "The Pricing of Options and Corpoorate
    Liabilities". Journal of Political Economy, 81, 3, 637-654
    [8] Bolye, P. (1977), "Options: A Monte Carlo Approach". Journal of Financial
    Economics, 4, 323-338
    [9] Cont, R. and Tankov, P. (2002), "Retrieving Levy Processes from Option
    Prices: Regularization of an Ill-posed Inverse Problem". SIAM Journal on
    Control and Optimization, 45, 1, 1-25
    43
    [10] Cont, R. and Tankov, P. (2003), "Financial Modelling with Jump Processes".
    Chapman & Hall/CRC
    [11] Fouque, J-P., Papanicolaou, G., and Sircar, R. (2000). "Derivatives in Financial
    Markets with Stochastic Volatility" Cambridge University Press, 2000.
    [12] Hoshikawa, T., Nagai, K., and Kanatani, T. (2008), "Nonparametric Estimation
    Methods of Interated Multivariate Volatilities". Econometric Review, 23,
    112-138
    [13] Jackel, P. (2001), "Monte Carlo Methods in Finance". Wiley
    [14] Malliavin, P. and Mancino, M. E. (2002), "Fourier Series Method for Measurement
    of Multivariate Volatilities". Finance and Stochastics, 6, 49-61
    [15] Malliavin, P. and Mancino, M. E. (2002). "Instantaneous Liquidity Rate, Its
    Econometric Measurement by Volatility Feedback". C. R. Acad. Sci. Paris,
    334, 505??08
    [16] Malliavin, P. and Mancino, M. E. (2007), "A Nonparametric Calibration of
    the HJM Geometry: An Application of Ito Calculus to Financial Statistics".
    Japanese Journal of Mathematics, 2, 55-77
    [17] Reno, R. (2008), "Nonparametric Estimation of the Diffusion Coefficient of
    Stochastic Volatility Models". Econometric Theory, 24, 1174-1206
    [18] Shreve, S. (2004), "Stochastic Calculus for Finance II: Continuous-Time Models".
    Springer

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE