研究生: |
曾群祺 Ceng,Cyun-Ci |
---|---|
論文名稱: |
砷化鎵奈米線週期性陣列和砷化鎵奈米線/PEDOT:PSS混合型太陽能電池研製 The study of self-catalyzed GaAs nanowire periodic arrays and hybrid solar cells based on GaAs nanowires with PEDOT:PSS |
指導教授: |
黃金花
Huang,Jin Hua |
口試委員: |
黃倉秀
黃柏瑋 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 砷化鎵奈米線 、孔洞陣列 、奈米線週期陣列 、混合型太陽能電池 |
外文關鍵詞: | GaAs nanowire, GaAs nanowire periodic arrays, PEDOT:PSS, hybrid solar cells |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
砷化鎵是一種高效率的太陽電池材料,但是價格十分昂貴,因此如何降低其成本一直是一個重要的議題,所以在本實驗中將核殼結構之砷化鎵奈米線以鎵自催化方式成長於矽基板上,取代傳統生長於砷化鎵基板上,進而降低元件生產成本。
在論文中的第一部分,藉由電子束微影,在氧化層上形成週期孔洞陣列。藉由改變曝光電子劑量(μC cm-2),控制氧化層孔洞直徑大小,並且控制電子束照射間距,得到不同密度氧化層孔洞。這一部分藉由控制孔洞直徑與密度,來探討孔洞直徑與孔洞密度對奈米線的影響。
在論文的第二部份為製作太陽能電池元件,由於電子束微影的範圍太小,產生的光電流太小,以至於量不到,所以只用原生氧化層的孔洞來代替電子束微影形成的孔洞。PEDOT:PSS是目前最有潛力的有機半導體材料之一,以PEDOT:PSS作為P型半導體材料,在氧化銦錫導電玻璃上旋轉塗佈一層薄膜,再將奈米線與導電玻璃結合,形成砷化鎵/PEDOT:PSS混合型太陽能電池元件,並對不同直徑、長度的奈米線及PEDOT:PSS旋轉塗佈速度進行轉換效率的探討。本研究中得到的最高效率為0.136%。
Gallium arsenide is a high-performance while expensive photovoltaic material. How to reduce the cost remains the major issue for GaAs-based photovoltaic. In this study, the Ga-assisted VLS growth technique was applied to the fabrication of GaAs nanowires based solar cells on Si substrates, which can reduce the cost.
In the first part of this thesis, we used electron-beam lithography to form periodic pinhole arrays in the oxide layer. We found that the beam dose (μC cm-2) determined the pinhole diameter, while the pitch controlled the pinhole density. Thereafter, we studied the influences of pinhole diameter and density on the morphology of GaAs nanowires.
In the second part, we fabricated the solar cell devices based on PEDOT:PSS and GaAs nanowire arrays. The PEDOT:PSS has been one of the most promising conducting polymers and can act as a p-type semiconductor material. The PEDOT:PSS thin film was first deposited onto the indium tin oxide (ITO) conductive glass by spin coating. Then, the GaAs nanowire arrays were put onto the conductive glass to fabricate the GaAs/PEDOT:PSS hybrid solar cell device. The effects of the nanowire length and diameter as well as the spin coating speed on the performance of hybrid devices were investigated. The best power conversion efficiency achieved in this work is 0.136%.
[1] 牟中原教授,陳家俊教授,"奈米材料研究展望,"尖端材料台灣學術網, 2000.
[2] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354,
pp. 56-58, Nov 1991.
[3] K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi,
and H. Kakibayashi , "Growth and optical-properties of nanometer-scale
GaAs and InAs whiskers," Journal of Applied Physics, vol. 77, PP. 447-462, 1995.
[4] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, "Indium phosphide
nanowires as building blocks for nanoscale electronic and optoelectronic
devices," Nature, vol. 409, pp. 66-69, Jan 2001.
[5] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, et al.,
"Room-temperature ultraviolet nanowire nanolasers," Science, vol. 292, pp.
1897-1899, Jun 2001..
[6] J. T. Hu, T. W. Odom, and C. M. Lieber, "Chemistry and physics in one
dimension: Synthesis and properties of nanowires and nanotubes," Accounts of Chemical Research, vol. 32, pp. 435-445, May 1999.
[7] B. M. Kayes, H. A. Atwater, and N. S. Lewis, "Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells," Journal of Applied Physics, vol. 97, p. 114302, 2005.
[8] M. D. Kelzenberg , " Radial Junction Solar Cells," Available: http://www.its.caltech.edu/~spurgeon/Radial%20Junction.html
[9] A. Casadei, P. Krogstrup, M. Heiss, J. A. Röhr, C. Colombo, T. Ruelle, et al., "Doping incorporation paths in catalyst-free Be-doped GaAs nanowires," Applied Physics Letters, vol. 102, p. 013117, 2013.
[10] E. Dimakis, M. Ramsteiner, A. Tahraoui, H. Riechert, and L. Geelhaar, "Shell-doping of GaAs nanowires with Si for n-type conductivity," Nano Research, vol. 5, pp. 796-804, 2012.
[11] 李世光等,"奈米科學與技術導論,"經濟部工業局, 2002.
[12] 白春禮,"奈米科技現在與未來,"凡異出版社, 2002.
[13] 吳衡周,"自然科學概論,"華立圖書公司, 1995.
[14] K. J. Klabunde, " Nanoscale Materials in Chemistry," John Wiley & Sons, Inc. 2001.
[15] C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Some properties of spherical and rod-shaped semiconductor and metal nanocrystals," Pure and Applied Chemistry, vol. 74, pp. 1675-1692, Sep 2002.
[16] M. B. Mohamed, C. Burda, and M. A. El-Sayed, "Shape dependent ultrafast
relaxation dynamics of CdSe nanocrystals: Nanorods vs nanodots," Nano
Letters, vol. 1, pp. 589-593, Nov 2001.
[17] A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science, vol. 271, pp. 933-937, 1996.
[18] C. R. King, "Density of states:2D, 1D, and 0D," Georgia institute of technology, 2005.
[19] Y. Cui, Q. Wei, H. Park, C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289–1292, 2001.
[20] 林群傑,材料會訊, vol. 10, 2003.
[21] T. Y. Tseng , "(Ba,Sr)TiO3 thin films: Preparation, properties and reliability," Ferroelectrics, vol. 232, pp. 881-893, 1999.
[22] C. Y. Liu, H. T. Lue, and T. Y. Tseng, "Effects of nitridation of silicon and repeated spike heating on the electrical properties of SrTiO3 gate dielectrics," Applied Physics Letters, vol. 81, pp. 4416-4418, 2002.
[23] 蔡進譯, "超高效率太陽能電池-從愛因斯坦的光電效應談起," 物理雙月刊, vol. 27, pp. 701-719, 2005.
[24] Available: http://www.nrel.gov/ncpv/
[25] P. S. Priambodo, N. R. Poespawati, D. Hartanto, “Solar Cell Technology.” INTECH Open Access Publisher, 2013.
[26] Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code. Available: http://www.ni.com/white-paper/7230/en/
[27] Y. Hu, R. R. LaPierre, M. Li, K. Chen, and J. J. He, "Optical characteristics of GaAs nanowire solar cells," Journal of Applied Physics, vol. 112, p. 104311, 2012.
[28] M. Yu, Y. Z. Long, B. Sun, and Z. Y. Fan, "Recent advances in solar cells based on one-dimensional nanostructure arrays ," Nanoscale, vol. 4, p. 2783, 2012.
[29] Z. Y. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, "Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates," Nature Materials, vol. 8, p. 648, 2009.
[30] J. M. Spurgeon, H. A. Atwater, and N. S. Lewis, "A comparison between the behavior of nanorod array and planar Cd(Se, Te) photoelectrodes," Physical Chemistry. C, vol. 112, p. 6186, 2008.
[31] Q. Yan, F. Liu, L. Wang, J. Y. Lee, and X. S. Zhao, "Drilling nanoholes in colloidal spheres by selective etching," Journal of Materials Chemistry, vol. 16, p. 2132, 2006.
[32] K. Chen, J.-J. He, M.-Y. Li, and R. Lapierre, "Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching," Chinese Physics Letters, vol. 29, p. 036105, 2012.
[33] GaAs Zinc blende structure. Available: http://www.chem.shef.ac.uk/chm131-2001/cha01tal/compoundsemiconductors.html
[34] Silicon diamond structure. Available: http://www.chem.shef.ac.uk/chm131-2001/cha01tal/elementalsemiconductors.html
[35] GaAs band structure. Available: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/bandstr.html
[36] Silicon band structure. Available: http://www.ioffe.ru/SVA/NSM/Semicond/Si/bandstr.html
[37] Drift velocity versus electric field in Silicon and GaAs. Available: http://www.globalsino.com/micro/1/1micro9939.html
[38] Bandgap energy versus lattice constant of various III-V semiconductors at room temperature. Available: https://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap12/F12-06%20III-V%20bandgap%20energie.
[39] GaAs basic parameters at 300K. Available: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html
[40] Y. Y. Wu, and P. D. Yang, "Direct observation of vapor-liquid-solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, Apr 2001.
[41] D. Spirkoska, C. Colombo, M. Heiss, G. Abstreiter, and A. Fontcuberta i Morral, "The use of molecular beam epitaxy for the synthesis of high purity III–V nanowires," Journal of Physics: Condensed Matter, vol. 20, p. 454225, 2008.
[42] GaAs phase diagram. Available: http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_9/backbone/r9_2_1.html
[43] R. R. LaPierre, A. C. E. Chia, S. J. Gibson, C. M. Haapamaki, J. Boulanger, R.
Yee, et al., "III-V nanowire photovoltaics: Review of design for high efficiency, " physica status solidi (RRL) - Rapid Research Letters, vol. 7, pp. 815-830, 2013.
[44] J. A. Czaban , D. A. Thompson, and R. R. LaPierre , "GaAs Core-Shell Nanowires for Photovoltaic Applications," Nano Letters, vol. 9, pp. 148-154, 2009.
[45] C. Colombo, M. Heiβ, M. Grätzel, and A. Fontcuberta i Morral, "Ga llium arsenide p - i - n radial structures for photovoltaic applications," Applied Physics Letters, vol. 94, p. 173108, 2009.
[46] N. Sawaki. et al, "Catalyst free MBE-VLS growth of GaAs nanowires on (111)Si substrate," Physica Status Solidi C, vol.6, pp. 1436–144, 2009.
[47] T. Rieger, S. Heiderich, S. Lenk, M. I. Lepsa, D. Gr¨utzmacher, "Ga-assisted MBE growth of GaAs nanowires using thin HSQ layer," Journal of Crystal Growth, vol. 353, pp. 39–46, 2012.
[48] S. Plissard, G. Larrieu, X. Wallart, and P. Caroff, "High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning," Nanotechnology, vol. 22, p. 275602, 2011.
[49] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, "Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell," Applied Physics Letters, vol. 68, pp. 3120-3122, May 1996.
[50] J. J. M. Halls, and R. H. Friend, "The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction," Synthetic Metals, vol. 85, pp. 1307-1308, Feb 1997.
[51] F. Nuesch, F. Rotzinger, L. Si-Ahmed, and L. Zuppiroli, "Chemical potential shifts at organic device electrodes induced by grafted monolayers," Chemical Physics Letters, vol. 288, pp. 861-867, May 1998.
[52] M. Kemerink, J. M. Kramer, H. H. P. Gommans, and R. A. J. Janssen, "Temperature-dependent built-in potential in organic semiconductor devices," Applied Physics Letters, vol. 88, p. 3, May 2006.
[53] N. Kaur, M. Singh, D. Pathak, T. Wagner, and J. M. Nunzi, "Organic materials for photovoltaic applications: Review and mechanism," Synthetic Metals, vol. 190, pp. 20-26, 2014.
[54] F. Zhang, T. Song, and B. Sun, "Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application," Nanotechnology, vol. 23, p. 194006, 2012.
[55] J. J. Chao, S. C. Shiu, S. C. Hung, and C. F. Lin, "GaAs nanowire/ poly
(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells," Nanotechnology, vol. 21, p. 285203, 2010.
[56] V. J. Babu, S. Vempati, S. Sundarrajan, M. Sireesha, and S. Ramakrishna, "Effective nanostructred morphologies for efficient hybrid solar cells," Solar Energy, vol. 106, pp. 1-22, 2014.
[57] 奈米科學網. Available: https://nano.nchc.org.tw/index.php?apps=news&mod=welcome&action=show&gid=149
[58] R. Zhou, Y. Zheng, L. Qian, Y. Yang, P. H. Holloway, and J. Xue, "Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability," Nanoscale, vol. 4, pp. 3507-14, 2012.
[59] W. J. E. Beek, M. M. Wienk, M. Kemerink, X. N. Yang, and R. A. J. Janssen, "Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells," Journal of Physical Chemistry B, vol. 109, pp. 9505-9516, May 2005.
[60] L. N. He, C. Y. Jiang, Rusli, D. Lai, and H. Wang, "Highly efficient Si-nanorods /organic hybrid core-sheath heterojunction solar cells," Applied Physics Letters, vol. 99, p. 3, Jul 2011.
[61] D. Celik, M. Krueger, C. Veit, H. F. Schleiermacher, B. Zimmermann, S. Allard, et al., "Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments," Solar Energy Materials and Solar Cells, vol. 98, pp. 433-440, Mar 2012.
[62] H.-J. Syu, S.-C. Shiu, and C.-F. Lin, "Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%," Solar Energy Materials and Solar Cells, vol. 98, pp. 267-272, 2012.
[63] S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, "Morphology Dependence of Silicon Nanowire/Poly (3,4-ethylenedioxythiophene) : Poly(styrenesulfonate) Heterojunction Solar Cells," Chemistry of Materials, vol. 22, pp. 3108-3113, May 2010.
[64] E. Z. Shi, L. H. Zhang, Z. Li, P. X. Li, Y. Y. Shang, Y. Jia, et al., "TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%," Scientific Reports, vol. 2, p. 5, Nov 2012.
[65] Y. Jia, A. Y. Cao, X. Bai, Z. Li, L. H. Zhang, N. Guo, et al., "Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping," Nano Letters, vol. 11, pp. 1901-1905, May 2011.
[66] Q. D. Tai, X. Z. Zhao, and F. Yan, "Hybrid solar cells based on poly(3-hexylthiophene) and electrospun TiO2 nanofibers with effective interface modification," Journal of Materials Chemistry, vol. 20, pp. 7366-7371, 2010.
[67] S. J. Wu, Q. D. Tai, and F. Yan, "Hybrid photovoltaic devices based on poly (3-hexylthiophene) and ordered electrospun ZnO nanofibers," Journal of Physical Chemistry C, vol. 114, pp. 6197-6200, Apr 2010.
[68] S. Q. Ren, L. Y. Chang, S. K. Lim, J. Zhao, M. Smith, N. Zhao, et al., "Inorganic-organic hybrid solar cell: Bridging quantum dots to conjugated polymer nanowires," Nano Letters, vol. 11, pp. 3998-4002, Sep 2011.
[69] W. F. Fu, Y. Shi, W. M. Qiu, L. Wang, Y. X. Nan, M. M. Shi, et al., "High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols," Physical Chemistry Chemical Physics, vol. 14, pp. 12094-12098, 2012.
[70] K. F. Jeltsch, M. Schädel, J.-B. Bonekamp, P. Niyamakom, F. Rauscher, H. W. A. Lademann, et al., "Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods," Advanced Functional Materials, vol. 22, pp. 397-404, 2012.
[71] Y. F. Zhou, M. Eck, C. Men, F. Rauscher, P. Niyamakom, S. Yilmaz, et al., "Efficient polymer nanocrystal hybrid solar cells by improved nanocrystal composition," Solar Energy Materials and Solar Cells, vol. 95, pp. 3227-3232, Dec 2011.
[72] H. Park, S. Chang, J. Jean, J. J. Cheng, P. T. Araujo, M. S. Wang, et al., "Graphene cathode-based ZnO nanowire hybrid solar cells," Nano Letters, vol. 13, pp. 233-239, Jan 2013.
[73] 黃桂武, "軟性印製透明導電高分子 材料技術發展," 光連雙月刊, no. 102, pp.58-65, 2012.
[74] A. G. MacDiarmid, J. M. Wiesinger, and Y. N. Xia, "Methods for preparing conductive polyanilines," United States Patent, no. US5773568 A, 1998.
[75] PEDOT: PSS structure. Available: https://www.researchgate.net/figure/261957920_fig4_Figure-1-A-Primary-structure-B-secondary-structure-of-PEDOTPSS-complex-1-5
[76] K. Uma, T. Subramani, H.-J. Syu, T.C. Lin, and C.F. Lin, " Fabrication of silicon nanowire /poly(3,4 -ethylenedioxythiophene) : poly(styrenesulfonate) -graphene oxide hybrid solar cells," journal of applied physics, vol. 117, p.105102, 2015.
[77] J. J. Chao, S. C. Shiu, S. C. Hung, and C. F. Lin, "GaAs nanowire/ poly
(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells," Nanotechnology, vol. 21, p. 285203, Jul 2010.
[78] J. Wang, H. Wang, A. B. Prakoso, A. S. Togonal, L. Hong, C. Jiang, and, Rusli," High efficiency silicon nanowire /organic hybrid solar cells with two-step surface treatment," Nanoscale, vol.7, p. 4559, 2015.
[79] 吳建頤, "砷化鎵奈米線/PEDOT:PSS混合型太陽能電池研製," 清華大學碩士論文, 2014.
[80] J. R. Arthur, "Interaction of Ga and As2 molecular beams with GaAs surfaces," Journal of Applied Physics, vol. 39, p. 4032, 1968.
[81] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As2 and Ga on {100 } GaAs surfaces," Surface Science, vol. 64, pp. 293-304, 1977.
[82] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As4 and Ga on {100} GaAs surfaces using a modulated molecular-beam technique," Surface Science, vol. 50, pp. 434-450, 1975.
[83] A. Y. Cho, "GaAs epitaxy by a molecular beam method: Observations of surface structure on the (001) face," Journal of Applied Physics, vol. 42, p. 2074, 1971.