簡易檢索 / 詳目顯示

研究生: 張維恩
Chang, We En
論文名稱: 水熱法合成二硫化鉬奈米結構之材料與光觸媒特性研究
Materials Characterization and Photocatalytic Activity of Molybdenum Disulfide Nanostructure Synthesized by Hydrothermal Method
指導教授: 吳志明
Wu, Jhy Ming
口試委員: 林宗宏
杜正恭
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 76
中文關鍵詞: 水熱法二硫化鉬奈米結構1-丁基-3-甲基咪唑氯化鹽光觸媒
外文關鍵詞: hydrothermal method, MoS2 (Molybdenum disulfide), nanostructure, 1-butyl-3-methylimidazolium chloride salt (BMIM[Cl]), photocatalysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用水熱法製程成功合成奈米花形貌二硫化鉬(Molybdenum disulfide, MoS2)粉末,藉由添加1-丁基-3-甲基咪唑氯化鹽(1-butyl-3-methylimidazolium chloride salt, BMIM[Cl])離子液體使得單顆花朵形貌更加明顯,並利用FESEM、HRTEM、XRD、Raman討論其表面形貌、材料結構及化學性質等等,接著針對分析結果討論二硫化鉬光觸媒在可見光(400 < λ < 775 nm)下降解羅丹明(Rhodamine)染料的能力達到90 %。
    本研究使用二水鉬酸鈉(Sodium molybdenum oxide dehydrate, Na2MoO4‧2H2O)以及硫脲(Thiourea, CH4N2S)分別作為二硫化鉬之鉬原子及硫原子前驅物,並且添加BMIM[Cl]作為單顆球狀成核區。利用BMIM[Cl]介面活性劑在水中容易解離成離子特性,因[BMIM]+為一種疏水基容易團聚成球狀,使MoO42-透過電荷相吸附著在球狀[BMIM]+,接著S2-再與Mo4+鍵結形成片狀結構,整段製程皆利用水熱法製程持溫一段時間完成。經FESEM分析,當BMIM[Cl]濃度增加時二硫化鉬奈米花尺寸隨之增加,經XRD分析得知結構為 2H-MoS2 (JCPDS Card No.37-1492),經HRTEM分析,觀察得到二硫化鉬具備層狀結構,經Raman分析,峰值383 cm-1 (E12g)與 408 cm-1 (A1g)出現偏移。


    In this study, MoS2 (Molybdenum disulfide) nanoflowers have been synthesized by hydrothermal method with adding 1-butyl-3-methylimidazolium chloride salt (BMIM[Cl]) ionic liquid as surface active agent. The materials characterization of the MoS2 nanoflowers were performed by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD), and Raman spectroscopy to investigate the surface morphology, material structure, and chemical properties. On the basis of our results, the photocatalytic activity of MoS2 for decomposing Rhodamine B (RhB) solution under visible light (400 < λ < 775 nm) can be reached 90 % under visible-light illumination.
    The sodium molybdenum oxide dehydrate (Na2MoO4‧2H2O) and thiourea (CH4N2S) were acted as precursor of MoS2. The BMIM[Cl] was dissolved in DI water to form [BMIM]+ ionic liquid with hydrophobic property, therefore MoO42- adsorbed on [BMIM]+ spheres to grew the MoO42- spheres. After that, the S2- reacted with Mo4+ to form MoS2 nanoflowers. The process was performed by hydrothermal method. FESEM images showed that the size of MoS2 nanoflowers increases with increasing the concentration of BMIM[Cl]. The XRD pattern indicated the nanoflowers belong to 2H-MoS2 structure (JCPDS Card No.37-1492).The HRTEM showed layer by layer structure. The Raman patterns showed that the 383 cm-1 (E12g) and 408 cm-1 (A1g) modes have been observed.

    第一章 緒論 1 1.1前言 1 1.2研究動機 1 第二章 文獻回顧 3 2.1二硫化鉬簡介 3 2.2二硫化鉬合成方式 5 2.2.1水熱法 5 2.2.2化學氣相沉積法 10 2.3二硫化鉬應用 14 2.3.1光觸媒 14 2.3.2 二硫化鉬裂解水產氫 28 2.3.3 二硫化鉬鋰離子電池 32 2.3.4 二硫化鉬鈉離子電池 35 2.3.5二硫化鉬電晶體 40 第三章 實驗方法 43 3.1實驗方法 43 3.2實驗流程 44 3.2.1前驅物製備 45 3.2.2水熱法製程 45 3.2.3材料特性分析方法 46 第四章 結果與討論 51 4.1掃描式電子顯微鏡表面形貌分析(SEM) 51 4.2 X光繞射之結構與成份分析(XRD) 54 4.3 穿透式電子顯微鏡之晶體結構分析(TEM) 56 4.4 拉曼光譜分析(Raman) 58 4.5 X光光子能譜分析(XPS) 60 4.6 比表面積分析(BET) 62 4.7光觸媒催化實驗與分析 64 4.7.1實驗方式與架構 64 4.7.2羅丹明溶液光降解實驗 65 4.7.3二硫化鉬奈米花光催化降解實驗 65 4.7.4二硫化鉬奈米花光催化分解染料機制 67 4.7.5二硫化鉬奈米花光觸媒應用在軟性基板 68 第五章 結論 70 第六章 未來展望 72 參考文獻 73

    [1] X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science 331 (2011) 746-750.
    [2] E.S. Jang, J.H. Won, S.J. Hwang, J.H. Choy, Advanced Materials 18 (2006) 3309-3312.
    [3] D. Wang, Y. Duan, Q. Luo, X. Li, L. Bao, Desalination 270 (2011) 174-180.
    [4] Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Journal of the American Chemical Society 133 (2011) 6490-6492.
    [5] N. Singh, G. Jabbour, U. Schwingenschlögl, The European Physical Journal B 85 (2012) 1-4.
    [6] H.S.S. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, Angewandte Chemie International Edition 49 (2010) 4059-4062.
    [7] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Letters 10 (2010) 1271-1275.
    [8] C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4 (2010) 2695-2700.
    [9] R. Rosentsveig, A. Gorodnev, N. Feuerstein, H. Friedman, A. Zak, N. Fleischer, J. Tannous, F. Dassenoy, R. Tenne, Tribol Lett 36 (2009) 175-182.
    [10] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Letters 11 (2011) 5111-5116.
    [11] J.P. Wilcoxon, G.A. Samara, Physical Review B 51 (1995) 7299-7302.
    [12] J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Chemistry of Materials 22 (2010) 4522-4524.
    [13] G.S. Bang, K.W. Nam, J.Y. Kim, J. Shin, J.W. Choi, S.-Y. Choi, ACS applied materials & interfaces 6 (2014) 7084-7089.
    [14] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317 (2007) 100-102.
    [15] E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J.C. Bernède, J. Tedd, J. Pouzet, J. Salardenne, Solar Energy Materials and Solar Cells 46 (1997) 115-121.
    [16] J.P. Wilcoxon, T.R. Thurston, J.E. Martin, Nanostructured Materials 12 (1999) 993-997.
    [17] M. Chhowalla, G.A.J. Amaratunga, Nature 407 (2000) 164-167.
    [18] X.-L. Li, J.-P. Ge, Y.-D. Li, Chemistry – A European Journal 10 (2004) 6163-6171.
    [19] C.M. Zelenski, P.K. Dorhout, Journal of the American Chemical Society 120 (1998) 734-742.
    [20] Q. Li, J.T. Newberg, E.C. Walter, J.C. Hemminger, R.M. Penner, Nano Letters 4 (2004) 277-281.
    [21] Y.-H. Li, Y.M. Zhao, R.Z. Ma, Y.Q. Zhu, N. Fisher, Y.Z. Jin, X.P. Zhang, The Journal of Physical Chemistry B 110 (2006) 18191-18195.
    [22] L. Ma, W.-X. Chen, H. Li, Z.-D. Xu, Materials Chemistry and Physics 116 (2009) 400-405.
    [23] W.-J. Li, E.-W. Shi, J.-M. Ko, Z.-z. Chen, H. Ogino, T. Fukuda, Journal of Crystal Growth 250 (2003) 418-422.
    [24] H. Luo, C. Xu, D. Zou, L. Wang, T. Ying, Materials Letters 62 (2008) 3558-3560.
    [25] L. Ma, W.-X. Chen, H. Li, Y.-F. Zheng, Z.-D. Xu, Materials Letters 62 (2008) 797-799.
    [26] Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Small 8 (2012) 966-971.
    [27] Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, Advanced Materials 24 (2012) 2320-2325.
    [28] J. Lin, J. Shen, R. Wang, J. Cui, W. Zhou, P. Hu, D. Liu, H. Liu, J. Wang, R.I. Boughton, Journal of Materials Chemistry 21 (2011) 5106-5113.
    [29] L. Shi, L. Liang, F. Wang, M. Liu, J. Sun, Energy and Environment Focus 4 (2015) 74-81.
    [30] W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, small 9 (2013) 140-147.
    [31] K. Hu, X. Hu, Y. Xu, J. Sun, J Mater Sci 45 (2010) 2640-2648.
    [32] S. Bai, L. Wang, X. Chen, J. Du, Y. Xiong, Nano Res. 8 (2015) 175-183.
    [33] J. Yan, G. Wu, N. Guan, L. Li, Z. Li, X. Cao, Physical Chemistry Chemical Physics 15 (2013) 10978-10988.
    [34] M.S. Dresselhaus, I.L. Thomas, Nature 414 (2001) 332-337.
    [35] J.A. Turner, Science 305 (2004) 972-974.
    [36] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, Journal of the American Chemical Society 127 (2005) 5308-5309.
    [37] M. Mavrikakis, Nat Mater 5 (2006) 847-848.
    [38] Y. Hou, A.B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, I. Chorkendorff, Angewandte Chemie International Edition 52 (2013) 3621-3625.
    [39] H. Vrubel, X. Hu, Angewandte Chemie International Edition 51 (2012) 12703-12706.
    [40] Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo, Nano Letters 11 (2011) 4168-4175.
    [41] A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Energy & Environmental Science 5 (2012) 5577-5591.
    [42] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, Journal of the American Chemical Society 133 (2011) 7296-7299.
    [43] H. Vrubel, D. Merki, X. Hu, Energy & Environmental Science 5 (2012) 6136-6144.
    [44] T. Wang, L. Liu, Z. Zhu, P. Papakonstantinou, J. Hu, H. Liu, M. Li, Energy & Environmental Science 6 (2013) 625-633.
    [45] Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Nat Commun 5 (2014).
    [46] V.W.-h. Lau, A.F. Masters, A.M. Bond, T. Maschmeyer, Chemistry – A European Journal 18 (2012) 8230-8239.
    [47] H.I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J.R. Long, C.J. Chang, Science 335 (2012) 698-702.
    [48] D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Nano Letters 13 (2013) 1341-1347.
    [49] J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Nat Mater 11 (2012) 963-969.
    [50] J.D. Benck, Z. Chen, L.Y. Kuritzky, A.J. Forman, T.F. Jaramillo, ACS Catalysis 2 (2012) 1916-1923.
    [51] A.B. Laursen, P.C.K. Vesborg, I. Chorkendorff, Chemical Communications 49 (2013) 4965-4967.
    [52] E.G. Seebauer, K.W. Noh, Materials Science and Engineering: R: Reports 70 (2010) 151-168.
    [53] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Advanced Materials 25 (2013) 5807-5813.
    [54] L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, O.G. Schmidt, Advanced Materials 25 (2013) 1180-1184.
    [55] M. Winter, R.J. Brodd, Chemical Reviews 104 (2004) 4245-4270.
    [56] M. Armand, J.M. Tarascon, Nature 451 (2008) 652-657.
    [57] T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Energy & Environmental Science 7 (2014) 209-231.
    [58] M. Pumera, Z. Sofer, A. Ambrosi, Journal of Materials Chemistry A 2 (2014) 8981-8987.
    [59] M. Acerce, D. Voiry, M. Chhowalla, Nat Nano 10 (2015) 313-318.
    [60] A.V. Murugan, M. Quintin, M.-H. Delville, G. Campet, C.S. Gopinath, K. Vijayamohanan, Journal of Power Sources 156 (2006) 615-619.
    [61] H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, The Journal of Physical Chemistry B 110 (2006) 8535-8539.
    [62] P.-p. Wang, H. Sun, Y. Ji, W. Li, X. Wang, Advanced Materials 26 (2014) 964-969.
    [63] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, Nat Chem 5 (2013) 263-275.
    [64] X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong, H. Zhang, Small 9 (2013) 3433-3438.
    [65] X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, Advanced Functional Materials 25 (2015) 1393-1403.
    [66] K. Chang, W. Chen, ACS Nano 5 (2011) 4720-4728.
    [67] J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, ACS Nano 9 (2015) 3837-3848.
    [68] H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang, C. Li, Advanced Materials 27 (2015) 3687-3695.
    [69] B. Dunn, H. Kamath, J.-M. Tarascon, Science 334 (2011) 928-935.
    [70] Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen, Angewandte Chemie 126 (2014) 13008-13012.
    [71] M. Dubois, D. Billaud, Journal of Solid State Chemistry 127 (1996) 123-125.
    [72] M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Advanced Functional Materials 23 (2013) 947-958.
    [73] V. Palomares, M. Casas-Cabanas, E. Castillo-Martinez, M.H. Han, T. Rojo, Energy & Environmental Science 6 (2013) 2312-2337.
    [74] J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, Angewandte Chemie International Edition 52 (2013) 4633-4636.
    [75] J. Park, J.-S. Kim, J.-W. Park, T.-H. Nam, K.-W. Kim, J.-H. Ahn, G. Wang, H.-J. Ahn, Electrochimica Acta 92 (2013) 427-432.
    [76] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat Commun 5 (2014).
    [77] H. Hwang, H. Kim, J. Cho, Nano Letters 11 (2011) 4826-4830.
    [78] Y.X. Wang, S.L. Chou, D. Wexler, H.K. Liu, S.X. Dou, Chemistry-A European Journal 20 (2014) 9607-9612.
    [79] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nature nanotechnology 6 (2011) 147-150.
    [80] A.K. Geim, K.S. Novoselov, Nature materials 6 (2007) 183-191.
    [81] K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, nature 438 (2005) 197-200.
    [82] A. Ayari, E. Cobas, O. Ogundadegbe, M.S. Fuhrer, Journal of applied physics 101 (2007) 14507-14507.
    [83] M. Bohr, R. Chau, T. Ghani, K. Mistry, IEEE Spectrum 44 (2007) 23-29.
    [84] D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, K.C. Saraswat, Applied Physics Letters 83 (2003) 2432-2434.
    [85] K. Xiong, J. Robertson, M. Gibson, S. Clark, Applied physics letters. 87 (2005) 183505.
    [86] R.J. Wu, M.L. Odlyzko, K.A. Mkhoyan, Ultramicroscopy 147 (2014) 8-20.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE