簡易檢索 / 詳目顯示

研究生: 梁育誠
論文名稱: 耗散粒子動力學模擬雙嵌段共聚物共混單團鏈共聚物於不同狀態下之行為探討
Dissipative Particle Dynamics Simulation Study on Behaviors of Diblock Copolymer/Homopolymer Blends in Different States
指導教授: 張榮語
口試委員: 吳建興
許嘉翔
曾煥錩
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 61
中文關鍵詞: 耗散粒子動力學高分子共混高分子形態學層板結構自組裝
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子共混為高分子材料研究中技術之一。本研究為利用耗散粒子動力學模擬方法,模擬雙嵌段共聚物共混單團鏈共聚物在的自組裝行為,在本文主要是模擬聚苯乙烯-聚乙烯吡咯烷酮(PS-PVP)摻混聚苯乙烯(PS)的情況。主要控制變因為添加的單團鏈共聚物鏈長和添加的單團鏈共聚物比例及系統的溫度。在恆溫恆體積下,了解其形態變化和在何種控制變因下會產生層板狀結構。並利用高分子性質如末端末端距離和接點距離來探討在不同情況下層板結構的差異性。
    本論文結果顯示:在共混單團鏈共聚物後,在無因次系統溫度介於1.0至1.4、PS體積分率介於0.5至0.6,其最終平衡形態圖為層板結構。而在固定溫度下,加入短鏈的單團鏈共聚物結果顯示單團鏈共聚物分佈在嵌段和嵌段之間;而加入的為長鏈單團鏈共聚物,長鏈單團鏈共聚物則會較集中在層板中央。而在改變溫度情況下,在低溫時,中等長度的單團鏈共聚物分佈情形較和短鏈單團鏈共聚物相似;而高溫時,中等長度的單團鏈共聚物分佈情形則與長鏈單團鏈共聚物相似。


    Polymer blending is one of important technologies in polymer processing. In this work, we simulated the self-assembly of diblock copolymer Polystyrene-Polyvinylpyrrolidone (PS-PVP) and homo- Polystyrene (homo-PS) by dissipative particle dynamics (DPD) simulation method. The variables we changed are the chain length and volume fraction of added homopolymer, and the system temperature. In NVT ensemble, we investigated how morphology changing with different variables; and understood how lamellar structures formed with control variables. Finally, we used polymer properties such as end-to-end distance, junction point distance, and thickness of lamellar to discuss differences in different lamellar structures.
    In this thesis, the results show: after blending diblock copolymer with homopolymer, while temperature ranging from 1.0 to 1.4 and the volume fraction of polymer A ranging from 0.5 to 0.6, the equilibrium morphology is lamellar structure. In fixed temperature, while blending short-chained homopolymer, it shows homopolymer would locate between blocks. When blending with long-chained homopolymer, the long-chained homopolymer would be at the central of lamellar. In the case of changing the temperature: at low temperature, the distribution of moderate-chained homopolymer is more similar to short-chained homopolymer; while at high temperature, the distribution of moderate-chained homopolymer is similar to long-chained homopolymer

    摘要 I Abstract II 目錄 III 圖目錄 IV 表目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 電腦模擬和耗散粒子動力學簡介 3 1.3 研究動機與目的 4 第二章 文獻回顧 5 2.1 耗散粒子動力學模擬文獻回顧 5 2.2 高分子共混系統實驗及模擬之文獻回顧 7 第三章 研究方法 16 3.1 耗散粒子動力學基本理論架構 16 3.1.1 耗散粒子動力學作用力場 18 3.1.2 運動方程式的數值積分法 20 3.1.3 週期性邊界與最小鏡像法 21 3.1.4 耗散粒子動力學基本假設與模擬流程 24 3.2 統計性質 26 第四章 模擬系統驗證與架構 28 4.1 耗散粒子動力學單顆粒子系統驗證 28 4.2 耗散粒子動力學雙嵌段共聚物系統驗證 29 4.3 雙嵌段共聚物共混單團鏈共聚物系統驗證 32 第五章 結果與討論 37 5.1 雙嵌段高分子/單團鏈共聚物共混之系統介紹 37 5.2 雙嵌段高分子/單團鏈共聚物之平衡形態圖討論 43 5.3 層板結構於不同體積分率下之系統分析 47 5.4 層板結構於不同系統溫度下之系統分析 53 第六章 結論與未來展望 57 參考文獻 59

    1. Chou, H.J., Dissipative Particle Dynamics Simulation on the Shear-Induced Morphology Transitions of Nanoparticles within Diblock Copolymers Composites. 2013.
    2. Luo, Z.L. and J.W. Jiang, Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends. Polymer, 2010. 51(1): p. 291-299.
    3. Yen, L.C., Morphological Transition of Side Chain Functionalized Group Copolymer Blend with Homopolymer via Dissipative Particle Dynamics Simulation. 2010.
    4. Mogi, Y., M. Nomura, H. Kotsuji, K. Ohnishi, Y. Matsushita, and I. Noda, Superlattice Structures in Morphologies of the Abc Triblock Copolymers. Macromolecules, 1994. 27(23): p. 6755-6760.
    5. Tsai, Y.T., Shear-Induced Microphase Transitions of Janus Nanorod/Diblock Copolymer Blends via Dissipative Particle Dynamics Simulations. 2013.
    6. Tanaka, H., H. Hasegawa, and T. Hashimoto, Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers. Macromolecules, 1991. 24(1): p. 240-251.
    7. Matsen, M., Phase behavior of block copolymer/homopolymer blends. Macromolecules, 1995. 28(17): p. 5765-5773.
    8. Dikobe, D.G. and A.S. Luyt, Morphology and properties of polypropylene/ethylene vinyl acetate copolymer/wood powder blend composites. Express Polymer Letters, 2009. 3(3): p. 190-199.
    9. Padmanabhan, P., F.J. Martinez-Veracoechea, J.C. Araque, and F.A. Escobedo, A theoretical and simulation study of the self-assembly of a binary blend of diblock copolymers. Journal of Chemical Physics, 2012. 136(23).
    10. Wang, J.J., Z.Z. Li, X.P. Gu, L.F. Feng, C.L. Zhang, and G.H. Hu, A dissipative particle dynamics study on the compatibilizing process of immiscible polymer blends with graft copolymers. Polymer, 2012. 53(20): p. 4448-4454.
    11. Tschierske, C., Liquid crystal engineering – new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chemical Society Reviews 2007. 36(12): p. 41.
    12. Perepichka, I.I., Self-Assembly of PS-PVP Block Copolymers and Their Complexes at the Air/Water Interface2011.
    13. Computer-aided engineering. Available from: http://en.wikipedia.org/wiki/Computer-aided_engineering.
    14. Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters, 1992. 19(3): p. 155-160.
    15. Espanol, P. and P. Warren, Statistical-Mechanics of Dissipative Particle Dynamics. Europhysics Letters, 1995. 30(4): p. 191-196.
    16. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 4423-4435.
    17. Kenneth R. Shull, E.J.K., Segregation of Block Copolymers to Interfaces between Immiscible Homopolymers. Macromolecules, 1990. 23: p. 4780-4787.
    18. Groot, R.D. and T.J. Madden, Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics, 1998. 108(20): p. 8713-8724.
    19. Takeji Hashimoto, H.T., Hirokazu Hasegawa, Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 2. Effects of Molecular Weights of Homopolymers. Macromolecules, 1990. 23: p. 4378-4386.
    20. Hashimoto, H.T.a.T., Ordered Structures of Block Polymer/Homopolymer Mixtures. 3.Temperature Dependence. Macromolecules, 1991. 24: p. 5713-5720.
    21. Qian, H.J., Z.Y. Lu, L.J. Chen, Z.S. Li, and C.C. Sun, Dissipative particle dynamics study on the interfaces in incompatible A/B homopolymer blends and with their block copolymers. Journal of Chemical Physics, 2005. 122(18).
    22. Lee, W.J., S.P. Ju, Y.C. Wang, and J.G. Chang, Modeling of polyethylene and poly (L-lactide) polymer blends and diblock copolymer: Chain length and volume fraction effects on structural arrangement. Journal of Chemical Physics, 2007. 127(6).
    23. Soto-Figueroa, C., L. Vicente, J.M. Martinez-Magadan, and M. Rodriguez-Hidalgo, Mesoscopic simulation of asymmetric-copolymer/homopolymer blends: Microphase morphological modification by homopolymer chains solubilization. Polymer, 2007. 48(13): p. 3902-3911.
    24. Gai, J.G., H.L. Li, C. Schrauwen, and G.H. Hu, Dissipative particle dynamics study on the phase morphologies of the ultrahigh molecular weight polyethylene/polypropylene/poly(ethylene glycol) blends. Polymer, 2009. 50(1): p. 336-346.
    25. Zhao, Y., L.Y. You, Z.Y. Lu, and C.C. Sun, Dissipative particle dynamics study on the multicompartment micelles self-assembled from the mixture of diblock copolymer poly(ethyl ethylene)-block-poly(ethylene oxide) and homopolymer poly(propylene oxide) in aqueous solution. Polymer, 2009. 50(22): p. 5333-5340.
    26. Guo, H.Y., X.Q. Qiu, and J. Zhou, Self-assembled core-shell and Janus microphase separated structures of polymer blends in aqueous solution. Journal of Chemical Physics, 2013. 139(8).
    27. Salvato-Vallverdu, G. Periodic Boundaries Conditions. 2009; Available from: http://www.texample.net/tikz/examples/periodic-boundaries-conditions/.
    28. Chen, N., L.T. Yan, and X.M. Xie, Interplay between Crystallization and Phase Separation in PS-b-PMMA/PEO Blends: The Effect of Confinement. Macromolecules, 2013. 46(9): p. 3544-3553.
    29. Dai, K.H. and E.J. Kramer, Determining the Temperature-Dependent Flory Interaction Parameter for Strongly Immiscible Polymers from Block-Copolymer Segregation Measurements. Polymer, 1994. 35(1): p. 157-161.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE