簡易檢索 / 詳目顯示

研究生: 謝欣珊
Hsieh, Hsin Shan
論文名稱: 無線充電通訊網路之資源分配
Resource Allocation for Wireless Powered Communication Networks
指導教授: 祁忠勇
Chi, Chong Yung
口試委員: 吳仁銘
洪樂文
祁忠勇
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 56
中文關鍵詞: 無線能量傳輸時間多樣性即時演算法最佳化
外文關鍵詞: Wireless energy transfer, time diversity, online algorithm, optimization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們考慮兩種不同架構的無線充電通訊網路(wireless powered communication networks, WPCNs)。第一種架構的無線充電通訊網路中,考慮兩個單天線的無線網路基地台(access point, AP)和一個單天線使用者在多個傳輸時槽(time slot)的情況下,進行能量與訊息的傳輸;第二種架構則是只在單一傳輸時槽的情況下,考慮兩個多天線的無線網路基地台、多個單天線的使用者以及能量波束成型(energy beamforming)、接收波束成型(receive beamforming)的設計。在第一種架構中,我們欲利用衰減通道中的時間多樣性來最佳化整個系統的傳輸量。首先,在假設所有通道狀態資訊(channel state information, CSI)為事前已知的情況之下,此最大化系統傳輸率的問題可以被轉換為一個凸優化的問題(convex problem)且可以有效率地被解決。然而,在實際的系統中,必須考慮通道狀態資訊有因果性的限制,因此,透過轉換此最大化系統傳輸量問題為一個最大化系統的能量效率的問題後,我們在本論文中提出接近實際系統的即時演算法(online algorithm)。除此之外,我們更進一步地提出具有低複雜度並且可以有效率地實現此實時演算法的方法。在第二種架構中,為了提升使用者的資訊傳輸量以及對抗雙倍的遠近現象(doubly-near-far phenomenon),透過聯合最佳化下行(downlink, DL)-上行(uplink, UL)的時間配置、能量波束成型、上行傳輸的功率配置和接收波束成型,我們欲最佳化所有使用者中最小的資訊傳輸率。我們提出一個有效率的連續逼近法(successive approximation method)來解決此問題,透過我們提出的連續逼近法所得到的近似解幾乎與具有高運算複雜度的全域最佳解(global optimal solution)有相同的性能表現。


    In this thesis, we consider two different scenarios of wireless powered communication
    networks (WPCNs). The first one is a WPCN with two single-antenna access points
    (APs) and a single-antenna user, where energy and information transfer over multiple
    time blocks is considered; the other is with two multiple-antenna APs and K
    single-antenna users, where energy beamforming and receive beamforming designs are
    considered. For the first scenario, we aim to maximize the system throughput by exploiting
    time diversity of fading channel. Under an ideal assumption that the channel
    state information (CSI) are known a priori, the throughput maximization problem
    can be reformulated as a convex problem, and hence can be optimally solved. Considering
    the practical causality constraint on CSI, we propose an online algorithm based
    on reformulating the throughput maximization problem as an energy-efficiency maximization
    problem. We further present an efficient implementation for the proposed
    online algorithm to reduce the computational complexity. For the second scenario, to
    maximize the users’ rate and overcome “doubly-near-far” phenomenon, we maximize
    the minimum rate among the users by jointly optimizing downlink(DL)-uplink(UL)
    time allocation, energy beamforming, UL power control and receive beamforming.
    We propose an efficient successive approximation method for handling this problem
    and get an approximation solution which has nearly optimal performance compared
    to the global optimal solution of the state-of-the-art algorithm, which is of high computational
    complexity.

    Acknowledgments i Chinese Abstract ii Abstract iii List of Tables v List of Figures vii Mathematical Notations viii Abbreviations ix 1 Introduction 1 2 Online Algorithm for Sum Rate Maximization in WPCN 5 2.1 System Model 5 2.2 Offline Optimization 8 2.3 Online Algorithm by Greedy Method 10 2.4 Proposed Online Algorithm 11 2.4.1 Problem Reformulation 11 2.4.2 Optimal Solution Analysis 14 2.4.3 Proposed Online Algorithm and Efficient Implementation 19 2.5 Simulation Results 22 2.6 Summary 27 3 Multi-User, Multi-Antenna WPCN 29 3.1 Min-Rate Maximization for Multi-User, Multi-Antenna WPCN 29 3.2 Proposed Min-Rate Maximization Algorithm 33 3.2.1 Problem Reformulation 33 3.2.2 Successive Approximation Method 34 3.3 Simulation Results 39 3.4 Summary 43 4 Conclusions and Future Directions 45 Bibliography 47 A Proof of Proposition 2.2 49 B Proof of Proposition 2.3 51 C Proof of Proposition 2.4 53 D Proof of Proposition 3.1 55

    H. Visser and R. Vullers, “RF energy harvesting and transport for wireless sensor
    network applications: Principles and requirements,” IEEE Proceedings, vol. 101,
    no. 6, pp. 1410–1423, June 2013.
    X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks with
    rf energy harvesting: A contemporary survey,” IEEE Communications Surveys
    Tutorials, vol. 17, no. 2, pp. 757–789, Secondquarter 2015.
    R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information
    and power transfer,” IEEE Transactions on Wireless Communications,
    vol. 12, no. 5, pp. 1989–2001, May 2013.
    X. Chen, C. Yuen, and Z. Zhang, “Wireless energy and information transfer
    tradeoff for limited-feedback multiantenna systems with energy beamforming,”
    IEEE Transactions on Vehicular Technology, vol. 63, no. 1, pp. 407–412, Jan
    2014.
    L. Liu, R. Zhang, and K.-C. Chua, “Wireless information transfer with opportunistic
    energy harvesting,” IEEE Transactions on Wireless Communications,
    vol. 12, no. 1, pp. 288–300, January 2013.
    X. Zhou, R. Zhang, and C. K. Ho, “Wireless information and power transfer in
    multiuser OFDM systems,” IEEE Transactions on Wireless Communications,
    vol. 13, no. 4, pp. 2282–2294, April 2014.
    Z. Xiang and M. Tao, “Robust beamforming for wireless information and power
    transmission,” IEEE Wireless Communications Letters, vol. 1, no. 4, pp. 372–
    375, August 2012.
    H. Ju and R. Zhang, “Throughput maximization in wireless powered communication
    networks,” IEEE Transactions on Wireless Communications, vol. 13,
    no. 1, pp. 418–428, January 2014.
    L. Liu, R. Zhang, and K.-C. Chua, “Multi-antenna wireless powered communication
    with energy beamforming,” IEEE Transactions on Communications, vol. 62,
    no. 12, pp. 4349–4361, Dec 2014.
    H. Ju and R. Zhang, “Optimal resource allocation in full-duplex wireless-powered
    communication network,” IEEE Transactions on Communications, vol. 62,
    no. 10, pp. 3528–3540, Oct 2014.
    Q. Sun, G. Zhu, C. Shen, X. Li, and Z. Zhong, “Joint beamforming design and
    time allocation for wireless powered communication networks,” IEEE Commu-
    nications Letters, vol. 18, no. 10, pp. 1783–1786, Oct 2014.
    R. Wang and D. Brown, “Throughput maximization in wireless powered communication
    networks with energy saving,” in 2014 48th Asilomar Conference on
    Signals, Systems and Computers, Nov 2014, pp. 516–520.
    J. Xu and R. Zhang, “Throughput optimal policies for energy harvesting wireless
    transmitters with non-ideal circuit power,” IEEE Journal on Selected Areas in
    Communications, vol. 32, no. 2, pp. 322–332, February 2014.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Golden
    section search in one dimension,” in Numerical recipes: The art of scientific
    computing, 3rd ed. New York, NY: Cambridge University Press, 2007, ch. 10.2.
    Q. Bai, J. Li, and J. Nossek, “Throughput maximizing transmission strategy of
    energy harvesting nodes,” in Cross Layer Design (IWCLD), 2011 Third Inter-
    national Workshop on, Nov 2011, pp. 1–5.
    M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex
    programming version 1.21,” April 2011. [Online]. Available: http://cvxr.com/
    cvx/
    W. Dinkelbach, “On nonlinear fractional programming,” Management Science,
    vol. 13, no. 7, pp. 492–498, July 1967.
    M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of
    block successive minimization methods for nonsmooth optimization,” SIAM J.
    Optimiz., vol. 23, no. 2, pp. 1126–1153, 2013.
    R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press,
    1985.
    Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE
    approach to distributed sum-utility maximization for a MIMO interfering broadcast
    channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sept.
    2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE