簡易檢索 / 詳目顯示

研究生: 周淑婷
Shu-Ting Chou
論文名稱: 砷化鎵系列量子點與量子井紅外線偵測器之研究
The Study of GaAs-Base Quantum-Dot and Quantum-Well Infrared Photodetectors
指導教授: 吳孟奇
Meng-Chyi Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 英文
論文頁數: 130
中文關鍵詞: 量子點紅外線偵測器量子井紅外線偵測器超晶格紅外線偵測器砷化銦/砷化鎵砷化鎵鋁/砷化鎵暗電流光響應度偵測度量子點
外文關鍵詞: Quantum dot infrared photodetector (QDIP), Quantum well infrared photodetector (QWIP), Superlattice infrared photodetector (SLIP), InAs/GaAs, AlGaAs/GaAs, dark current, spectral responsivity, detectivity, Quantum dot
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們在(100)指向的砷化鎵基板上成長砷化銦量子點結構。由原子力顯微鏡圖像顯示長晶溫度在480~520 ℃時,2.4單一層砷化銦量子點的尺寸呈現了兩種不同的分佈,同時我們也發現體積較大的量子點和缺陷有關。而改變磊晶速率的實驗中,光激發螢光強度對量測溫度的非線性變化可能是因為量子點中基態的填態效應減小所致。我們利用薛丁格方程式來模擬量子井和超晶格紅外線偵測器能帶結構的理論計算。此外,我們觀測到較高量子井掺雜密度的超晶格紅外線偵測器隨著偏壓的增加,有較高光響應度和頻譜響應紅位移的現象,此一現象是導因於低能量的光電子穿遂機率增加所致。針對量子點掺雜密度的研究,我們成長了不同掺雜密度的砷化銦/砷化鎵量子點紅外線偵測器結構,我們觀測到低掺雜密度的元件有較高的光響應度和背景限制溫度。為了降低元件的操作偏壓,我們利用不同的p型掺雜密度的砷化鎵緩衝層成長五層砷化銦/砷化鎵紅量子點外線偵測器結構,我們觀察到掺雜密度1 x 1016 cm-3的p型砷化鎵緩衝層暗電流減少,此一結果使得只有五層的紅量子點外線偵測器結構也可觀察到光響應度。因此,當選擇適當p型掺雜密度的砷化鎵緩衝層,我們在低偏壓0.8伏特觀察到110 K與溫度不靈敏偵測度的現象,此一結果是在高溫下有更多有效空激發能階使得躍遷機率增加,故此現象是導因於隨著溫度增加光電流劇增所致。與量子井紅外線偵測器相比較,量子點紅外線偵測器具有較寬的偵測波段以及可吸收正面入射光的特性。低掺雜密度的量子點紅外線偵測器有較高的光響應度和背景限制溫度,我們也觀察到隨著量子點掺雜密度減少,s/p偏極光的光電流比減少的特性。


    In this thesis, samples with InAs quantum dots (QD) grown on (100) GaAs substrate are investigated. AFM images exhibit the 2.4 ML InAs QDs could appear as two-group size distributions at 480 ~ 520 oC. Also observed is the large-sized relaxed islands are formed with dislocations. Besides, the two stair-like PL intensities with increasing temperature in growth rate tuning experiment is resulted from the decrease of state-filling effect of the ground state and the thermally activated repopulation of electrons to nearby dots. The calculations of band structures for quantum-well infrared photodetecotrs (QWIPs) and superlattice infrared photodetectors (SLIPs) based on time-independent Schrödinger’s equation are developed. Higher responsivity and the red shift of peak-responsivity wavelength with increased applied voltage are observed for SLIP with higher quantum-well doping. The phenomenon is attributed to the increase in the tunneling probability for low-energy photoelectrons with increasing applied voltage. To investigate the influence of QD doping densities on the performances of InAs/GaAs QDIPs, devices with different doping densities at the quantum-dot region are investigated. Higher responsivity and background limited performance (BLIP) temperature are observed for lower doping device. To reduce the operation voltages of the devices, five-stacked QDIPs with different p-type doping densities at the GaAs barrier layers are investigated. The decrease of dark currents is observed for the QDIP with 1x1016 cm-3 p-type doping density at the GaAs barrier layer, which results in an observable spectral response even for the thin five-stacked QDIP structure. With a proper choice of the p-type doping density, temperature-insensitive detectivities up to 110 K at low applied voltage 0.8 V are obtained. The phenomenon is attributed to the one order of magnitude increase of photocurrent with increasing temperature resulted from the increase of transition probability with more available empty excited states at higher temperature. Compared with QWIPs, QDIPs are of broader detection window and incident light polarization insensitive. QDIPs are of lower doping density can operate at high responsivity and high background limited performance temperature. Also observed is the decreasing photocurrent ratio of s/p–polarized lights for the QDIPs with decreasing QD doping density.

    Chapter 1 Introduction Chapter 2 The Formation Mechanisms and Optical Characteristics of InAs Quantum Dots Grown by Molecular Beam Epitaxy 2.1 Experiments 2.1.1 Formation Mechanisms and Wafer Preparations of InAs/GaAs QDs 2.1.2 The Measurements of Photoluminescence and Atomic Force Microscopy 2.2 Results and Discussion 2.2.1 The Influence of Growth Temperature on InAs/GaAs Quantum Dots 2.2.2 InAs/GaAs Quantum Dots with Different InAs Coverage 2.2.3 InAs/GaAs Quantum Dots Grown under Different Growth Rates 2.3 Conclusions Chapter 3 GaAs-Based Quantum-Well and Superlattice Infrared Photodetectors 3.1 Experiments 3.1.1 Wafer Preparation and Device Fabrications 3.1.2 Spectral Responses and I-V Characteristics Measurements 3.2 Results and Discussion 3.2.1 The Band Structure and Device Preformances of GaAs/(AlGa)As QWIP 3.2.2 The Band Structures of GaAs/(AlGa)As Superlattic 3.2.3 GaAs/(AlGa)As SLIPs with Single (AlGa)As Blocking Layer 3.3 Conclusions Chapter 4 InAs/GaAs Quantum-dot Infrared Photodetectors 4.1 Experiments 4.1.1 Wafer Preparation and Device Fabrications 4.1.2 Spectral Responses and I-V Characteristics Measurements 4.2 Results and Discussion 4.2.1 The Influence of QD Period Number on The Performances of QDIPs 4.2.2 The Influence of Doping Densities on The Preformances of QDIPs 4.2.3 QDIPs with p-Type-Doped GaAs Barrier Layers 4.2.4 Five-Period QDIPs with Asymmetric Structures 4.3 Conclusions Chapter 5 The Influence of Doping Density on the Normal Incident Absorption of Quantum-Dot Infrared Photodetectors 5.1 Experiments 5.1.1 Wafer Preparation and Device Fabrications 5.1.2 Spectral Responses and I-V Characteristics 5.2 Results and Discussion 5.2.1 Response Ratios Over s- and p- Polarized Lights for QDIPs and QWIPs 5.2.2 Electron Transport Model For QDIPs under s- and p- Polarized Lights 111 5.3 Conclusions Chapter 6 Conclusion

    [1] J. W. Kim, J. E. Oh, S. C. Hong, C. H. Park, and T. K. Yoo, IEEE Electron Device Lett. 21, 329 (2000).
    [2] S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stestson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelevy, IEEE Trans. Electron Devices 42, 326 (2000).
    [3] H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, Appl. Phys. Lett. 78, 79 (2001).
    [4] H. Lee, J. A. Johnson, M. Y. He, J. S. Speck, and P. M. Petroff, Appl. Phys. Lett. 78, 105 (2001).
    [5] S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, Appl. Phys. Lett. 78, 1023 (2001).
    [6] S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J. M. Gerard, Appl. Phys. Lett. 78, 2327 (2001).
    [7] S. F. Tang, S. Y. Lin, and S. C. Lee, Appl. Phys. Lett. 78, 2428 (2001).
    [8] S. Y. Lin, Y. R. Tsai, and S. C. Lee, Appl. Phys. Lett. 78, 2784 (2001).
    [9] V. Ryzhii, Appl. Phys. Lett. 78, 3346 (2001).
    [10] V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, Appl. Phys. Lett. 78, 3523 (2001).
    [11] J. Badziak, P. Parys, A. B. Vankov, J. Wolowski, and E. Woryna, Appl. Phys. Lett. 79, 21 (2001).
    [12] V. Letov, M. Ershov, S. G. Matsik, A. G. U. Perera, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, Appl. Phys. Lett. 79, 2094 (2001).
    [13] L. Chu, A. Zrenner, M. Bichler, and G. Abstreiter, Appl. Phys. Lett. 79, 2249 (2001).
    [14] E. T. Kim, Z.Chen, and A. Madhukar, Appl. Phys. Lett. 79, 3341 (2001).
    [15] Z. Chen, O. Baklenov, E. T. Kim, I. Mukhametzhanov, J. Tie A. Madhukar, Z. Ye, and J. C. Campbell, J. Appl. Phys. 89, 4558 (2001).
    [16] A. D. Stiff-Roberts, S. Chakrabarti, S. Pradhan, B. Kochman, and P. Bhattacharya, Appl. Phys. Lett. 80, 3265 (2002).
    [17] J. Phillips, J. Appl. Phys. 91, 4590 (2002).
    [18] V. Ryzhii. H. C. Liu, J. Appl. Phys. 92, 2354 (2002).
    [19] Z. Ye, J. C. Campbell, Z. Chen, E. T. Kim, and A. Madhukar, J. Appl. Phys. 92, 4141 (2002).
    [20] S. D. Gunapala, S. V. Bandara, A. Singh, J. K. Liu,S. B. Rafol, E. M. Luong, J. M. Mumolo, N. Q. Tran, D. Z. Y. Ting, J. D. Vincent, C. A. Shott, J. Long, and P. D. LeVan, IEEE Trans. Electron Devices 47, 963 (2000).
    [21] S. F. Tang, S. Y. Lin, and S. C. Lee, IEEE Trans. Electron Devices 49, 1341 (2002).
    [22] L. Jiang, S. S. Li, N. T. Yeh, J.I. Chyi, C. E. Ross, and K. S. Jones, Appl. Phys. Lett. 82, 1986 (2003).
    [23] M. D. Kim, S. K. Noh, S. C. Hong, and T. W. Kim, Appl. Phys. Lett. 82, 553 (2003).
    [24] B. Aslan, H. C. Liu, M. Korkusinski, S. J. Cheng, and Hawrylak, Appl. Phys. Lett. 82, 630 (2003).
    [25] Y. C. Chang, and David M. T. Kuo, Appl. Phys. Lett. 83, 156 (2003).
    [26] S. Y. Lin, Y. R. Tsai, and S. C. Lee, Appl. Phys. Lett. 83, 752 (2003).
    [27] Z. Ye, Joe C. Campbell, Z. Chen, E. T. Kim and A. Madhukar, Appl. Phys. Lett. 83, 1234 (2003).
    [28] J. Y. Duboz, H. C. Liu, Z. R. Wasilewski, M. Byloss, and R. Dudek, J. Appl. Phys. 93, 1320 (2003).
    [29] K. Stewart, M. Buda, J. Wong-Leung, L. Fu, C. Jagadish, A. Stiff-Roberts, and P. Bhattacharya, J. Appl. Phys. 94, 5283 (2003).
    [30] S. D. Gunapala, S. V. Bandara, J. K. Kiu, S. B. Rafol, and J. M. Mumolo, IEEE Trans. Electron Devices 50, 2353 (2003).
    [31] J. Z. Zhang, and I. Galbraith, Appl. Phys. Lett. 84, 1934 (2004).
    [32] J. Jiang, S. Tsao, T. O’Sullivan W. Zhang, H. Lim, T. Sills, K. Mi, G. J. Brown, and M. Z. Tidrow, Appl. Phys. Lett. 84, 2166 (2004).
    [33] J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T. O’Sullivan, T. Sills, M. Razeghi, G. J. Brown, and M. Z. Tidrow, Appl. Phys. Lett. 84, 2232 (2004).
    [34] E. T. Kim, A. Madhukar, Z. Ye, and Joe C. Campbell, Appl. Phys. Lett. 84, 3277 (2004).
    [35] C. K. Chia, S. J. Chua, Z. L. Miao, and Y. H. Chye, Appl. Phys. Lett. 85, 567 (2004).
    [36] J. Tatebayashi, Y. Arakawa, N. Hatori, H. Ebe, M. Sugawara, H. Sudo and A. Kuramata, Appl. Phys. Lett. 85, 1024 (2004).
    [37] S. M. Kim, and J. S. Harris, Appl. Phys. Lett. 85, 4154 (2004).
    [38] S. Raghavan, D. Forman, P. Hill, N. R. Weisse-Bernstein, G. von Winckel, P. Rotella, S. W. Kennerly, and J. W. Little, J. Appl. Phys. 96, 1036 (2004).
    [39] A.D. Stiff-Roberts, X. H. Su, S. Chakrabarti, and P. Bhattacharya, IEEE Photonics Technology Lett. 16, 867 (2004).
    [40] S. Chakrabarti, A.D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, IEEE Photonics Technology Lett. 16, 1361 (2004).
    [41] S. M. Kim, and J. S. Harris, IEEE Photonics Technology Lett. 16, 2538 (2004).
    [42] W. Zhang, H. Lim, M. Taguchi, S. Tsao, B. Movaghar, and M. Razeghi, Appl. Phys. Lett. 86, 191103 (2005).
    [43] P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, Appl. Phys. Lett. 86, 191106 (2005).
    [44] S. Krishna, Darren Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, Appl. Phys. Lett. 86, 193501 (2005).
    [45] L. Fu, P. Lever, K. Sears, H. H. Tan, and C. Jagadish, IEEE Electron Device Lett. 26, 628 (2005).
    [46] G. Ariyawansa, A. G. U. Perera, G. S. Raghavan, G. von Winckel, A. Stintz, and S. Krishna, IEEE Photonics Technology Lett. 17, 1064 (2005).
    [47] D. Pal, and E. Towe, Appl. Phys. Lett. 88, 153109 (2006).
    [48] L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. L. Roux, Appl. Phys. Lett. 47, 1099 (1985).
    [49] S. F. Tang, S.Y. Lin, and S. C. Lee, J. Nanoparticle Research 3, 489 (2001).
    [50] J. Drucker,Phys. Rev. B 48, 18203 (1993).
    [51] A. Polimeni, A.P atane, M. Henini, L. Eaves, and P. C. Main, Phys. Rev. B 59, 5064 (1999).
    [52] F. Tinjod, and H. Mariette, Phys. Stat. Sol. (b) 241, 550 (2004).
    [53] V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, J. Appl. Phys. 87, 8165 (2000).
    [54] Y. Nakata, K. Mukai, M. Sugawara, K. Ohtsubo, H. Ishikawa and N. Yokoyama, J. Crystal Growth 208, 93 (2000).
    [55] O. G. Schmidt, S. Kiravittaya, Y. Nakamura, H. Heidemeyer, R. Songmuang, C. Muller, N. Y. Jin-Phillip, K. Eberl, H. Wawra, S. Christiansen, H. Grabeldinger and H. Schweizer, Surface Sci. 514, 10 (2002).
    [56] S. Y. Lin, Y. J. Tsai and S. C. Lee, International Conference on Solid State Devices and Materials (SSDM), 2001, Tokyo, Japan.
    [57] W. H. Chang, T. M. Hsu, K. F. Tsai, T. E. Nee, J. I. Chyi and N. T. Yeh, Jpn. J. Appl. Phys. 38, 554 (1999).
    [58] S. L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995).
    [59] K. K. Choi, S. V. Bandara, S. D. Gunapala, W. K. Liu, and J. M. Fastenau, J. Appl. Phys. 91, 551 (2002).
    [60] P.L. Hagelstein, S. D. Senturia, and T. P. Orlando, Introductory Applied Quantum and Statistical Mechanics (Wiley, New York, 2004).
    [61] C. C. Chen, H. C. Hsu, W. H. Hsieh, C. H. Kuan, S. Y. Wang, and C. P. Lee, J. Appl. Phys. 91, 943 (2001).
    [62] S. Y. Lin, Y. R. Tsai, and S. C. Lee, Jpn. J. Appl. Phys., Part 2 40, L1290 (2001).
    [63] S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara,
    S. B. Rafol, and S. W. Kennerly, IEEE Photonics Technol. Lett. 16, 1361 (2004).
    [64] K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, Singapore, 1997), Chap. 9.
    [65] A. D. Stiff-Roberts, X. H. Su, S. Chakrabarti, and P. Bhattacharya, IEEE Photonics Technol. Lett. 16, 867 (2004).
    [66] C. Y. Huang, T. M. Ou, S. T. Chou, C. S. Tsai, M. C. Wu, S. Y. Lin, and J. Y. Chi, J. Vac. Sci. Tech. B 23, 1909 (2005).
    [67] S. T. Chou, S. Y. Lin, R. S. Hsiao, J.Y. Chi, J. S. Wang, M. C. Wu, and J. F. Chen, J. Vac. Sci. Tech. B 23, 1129 (2005).
    [68] S. T. Chou, C. H. Tsai, M. C. Wu, S. Y. Lin, and J. Y. Chi, IEEE Photonics Technol. Lett. 17, 2409 (2005).
    [69] S.T. Chou, M.C. Wu, S.Y. Lin, and J. Y. Chi, Appl. Phys. Lett. 88, 173511 (2006).
    [70] S.Y. Lin, J.Y. Chi, and S.C. Lee, J. Cryst. Growth 278, 351 (2005).
    [71] M.C. Hsu, Y.F. Hsu, S.Y. Lin, and C.H. Kuan, IEEE Trans. Electron Devices 47, 944 (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE