簡易檢索 / 詳目顯示

研究生: 李震宇
Chen-Yu Li
論文名稱: 以完全差動轉導實現濾波器之研究
A Study of Fully Differential Transconductor in Filter realization
指導教授: 黃惠良
Huey-Liang Hwang
楊武智
Wu-Zhi Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 產業研發碩士積體電路設計專班
Industrial Technology R&D Master Program on IC Design
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 70
中文關鍵詞: 運算轉導放大器長尾對適應性偏壓濾波器平方律
外文關鍵詞: OTA, LTP, adaptively biased, filter, square law
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,電流式主動元件受到學者和業界的愛戴,是因為電流式電路具有較大的頻寬和增益、較大的動態範圍、較精確的結果、較低的功率損耗和較小晶片面積的電路結構等優點,以證實它的優越性,也漸漸證實電流式電路比電壓式電路具有更好的精確度,由於運算轉導放大器(Operational Transconductance Amplifier, OTA)可藉由一偏壓電流改變其內部轉導值(transconductance),因而在設計OTA-C濾波器(OTA and capacitance filter)時,無須考慮電阻接地或外加電阻的問題,本論文就是基於此種特性,提出一種新型之OTA架構,並成功的應用在雙二次式濾波器(second order biquad filter)上。
    本篇論文主要是以長尾對(LTP)為中心架構,並結合適應性偏壓(adaptively biased)技術產生一個適當的補償電流來補償長尾對,使輸入輸出線性範圍得以延展,設計出低電壓完全差動運算轉導放大器(low power fully differential transconductor),從Hspice的模擬結果來看,線性範圍延展成從 -0.7V到0.7V,並將其應用在雙二次式濾波器上,可藉由一偏壓電流改變其內部轉導值,來獲得所需的角頻率(corner frequency)和品質因數(quality factor)。


    In recent years, the current mode active component is popular in scholastic discussion and commercial purposes. Current mode active components have the advantages of wider bandwidths, larger dynamic range, lower power consumption, smaller area and easier to design. The current-mode circuit is proved to be much more precise than its voltage-mode counter part. Since the transconductance of an operational transconductance amplifier (OTA) is electronically adjusted by the internal bias current, no resistors in the OTA-C circuit become an important advantage in the active filter design. In the thesis, the new OTA structure is presented and it is used in biquad filter.
    In this thesis, we proposed transconductance element with low power fully differential transconductor based on long tail differential pair (LTP) with adaptively biased technique, which generate suitable compensating current witch extend the input-output linear range. The result of Hspice simulation shows that with ±1.1V power supply, linearity range is between -0.7V and 0.7V. The proposed transconductor is used to design second order biquad filter. The transconductance of a transconductor is electronically adjusted by the internal bias current, so that suitable corner frequency and quality factor is obtained.

    Chinese abstract…………………………………….…………………..I English abstract…………………..…………………………………….II Acknowledgment…………………………...………………………….III Contents………………………………………………………………...IV List of Figures………………………………………………………….VI 1 Introduction…………………………………………………………1 2 Review of current mode element……….…………………………..5 2.1 Nullor………….………………………………………………...5 2.2 Current conveyor………………………...……………………...8 2.2.1 First generation current conveyor CCI……………............8 2.2.2 Second generation current conveyor CCII………….........10 2.2.3 Third generation current conveyor CCCII…………….....13 2.3 Second generation current controlled conveyor CCCII………..16 2.4 Operational transconductor amplifier………………………….19 2.5 Application of OTA………………………………………….....25 3 The fully differential transconductor design.…………………….32 3.1 Adaptively biased differential pair……………………………..32 3.2 Square low biased circuit……………………………………....36 3.3 Propose circuit of design……………………………………….39 4 Realization of biquad filter………………………….…………….41 4.1 Background…………………………………………………….41 4.1.1 Filter specifications………………………………………41 4.1.2 Butterworth filter………………………………………...42 4.1.3 Chebyshev filter………………………………………….42 4.1.4 Elliptic (Cauer) filter……………………………………..43 4.1.5 Bessel filter……………………………………………....44 4.2 Typical OTA-C biquad filter…………………………………...46 4.3 The fully differential biquad filter……………………………..51 4.3.1 Elements of the biquad filter……………………………..51 4.3.2 Transfer function of the biquad filter…………………….55 5 Simulation and result………….…………………………………..59 6 Conclusions………………………………………………………...68 References………………………………………………………………69

    [1] A. Nedungadi and T. R. Viswanathan, “Design of linear CMOS transconductance elements,” IEEE Trans. Circuits syst., vol. 31, pp. 891-894, 1984.
    [2] A. M. Ismail and A. M. Soliman, ”Novel CMOS wide-linear-range transconductance amplifier,” IEEE Trans. Circuits syst. I, vol. 47, pp. 1248-1253, 2000.
    [3] J. N. Babanezhad and G. C. Temes, “A 20-V four-quadrant CMOS analog multiplier,” IEEE J. Solid-State Circuits, vol. 11 pp. 1158-1168,1985.
    [4] H. Khorramabadi, “High frequency CMOS continuous time filters,” Ph.D. dissertation, University of California, Berkeley, 1985.
    [5] M. O. Shaker and S. A. Mahmoud and A. M. Soliman, “New CMOS fully differential transconductor and its application,” IEEE, Circuits and systems, 2006.
    [6] P. E. Allen and D. R. Holberg, “CMOS analog circuit design second edition,” Oxford University Press, New York, 2002.
    [7] S. A. Mahmoud and A. M. Soliman, “New CMOS fully differential difference transconductors and application to fully differential filters suitable for VLSI,” Microelectron. J., vol. 30, pp. 169-192, 1999.
    [8] S. Koziel and S. Szczepanski, “Design of highly linear tunable CMOS OTA for continuous-time filters,” IEEE Trans. Circuits Syst. II, vol. 49, no. 2, pp. 110-122,Feb. 2002.
    [9] Kimmo Koli, “CMOS Current Amplifiers: Speed versus Nonlinearity,” Ph.D. dissertation, Helsinki University of Technology, Nov. 2000.
    [10] John Choma and Wai-Kai chen, “Circuit and System Fundamentals,” University of Southern California, May 2003.
    [11] Theerachet Soorapanth, “CMOS RF Filtering at GHz Frequency,” Ph.D. dissertation, Stanford university, August 2002.
    [12] Paul M. Furth, “A Subthreshold CMOS Continuous-Time Bandpass Filter with Large-Signal Stability,” Analog Integrated Circuits and Signal Processing, Volume 19, Number 2, pp. 197-205, May 1999.
    [13] E. S. Sinencio, J. R. Angulo, B. L. Barranco and A. R. Vazquez, “Operational Transconductance Amplifier-Based Nonlinear Function Syntheses,” IEEE Journal of Solid-State Circuits, Vol. 24, No. 6, December 1989.
    [14] D. B. lopez, “Analog Processing circuits,” University of the Americas-Puebla National Institute.
    [15] U. Stehr, F. Henkel, L. Dalluge and P. Waldow, “A Fully Differential CMOS Integrated 4th order Reconfigurable Gm-C Lowpass filter for Mobile Communication,” ICECS 2003.
    [16] C. P. Yi, N. M. Noh, T. Z. A. Zulkifli, Z. A. A. Aziz and A. Marzuki, “Characterization of a CMOS gmC Low Pass Filter for WCDMA System in Wireless Application.”
    [17] M. Kumngern, P. Sampattavanich, P. Prommee and K. Deihan, “A capacitor-grounded current-runable current mode all-pass network,” TENCON 2004. 2004 IEEE Region 10 Conference, Vol. D, pp. 384-386, Nov. 2004.
    [18] C. Netbut, M. Kumngern, P. Prommee and K.Dejhan, “New Simple Square –Rooting Circuits Based on Translinear Current Conveyors,” ECTI Transactions on Electrical ENG., Electronics, and Communications Vol. 5, No. 1, February 2007.
    [19] Hspice manual
    [20] 蕭培墉, 吳孟賢, ed. “Hspice 積體電路設計分析與模擬導論,” 台北市:東華書局, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE