簡易檢索 / 詳目顯示

研究生: 彭嘉冠
Jia-Guan Peng
論文名稱: 日本腦炎病毒prM與E蛋白N-醣化作用之研究
N-linked glycosylation of prM and E proteins of Japanese Encephalitis Virus
指導教授: 吳夙欽
Suh-Chin Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 54
中文關鍵詞: 黃質病毒日本腦炎病毒次病毒顆粒重組次病毒顆粒N-鏈結醣化
外文關鍵詞: flavivirus, Japanese encephalitis virus, subviral particles, recombinant subviral particles, N-linked glycosylation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日本腦炎病毒分類於黃質病毒科、黃質病毒屬,其套膜上的兩種醣蛋白prM和E上分別帶有一個N-linked glycosylation的轉譯後修飾。 日本腦炎病毒的prM和E蛋白形成的複合物對於未成熟病毒顆粒及次病毒顆粒 (subviral particles) 的生合成是很重要的步驟,且prM 與E上之N-linked glycan對於病毒顆粒的形成與其表面性質有很大的影響。 根據前人之研究,在昆蟲細胞中,透過重組桿狀病毒 (recombinant baculovirus) 共同表現其他黃質病毒之prM和E,能得到類似於病毒顆粒的重組次病毒顆粒 (recombinant subviral particles, RSPs)。 因此,為了研究N-linked glycan是否影響JEV之RSPs的形成,我們以點突變的方法破壞prM和E上的醣化位置,並藉由重組桿狀病毒在Sf9昆蟲細胞中表現這些蛋白質。 這些在昆蟲細胞中表現之蛋白質,以PNGaseF確認其醣化之狀態後,發現在昆蟲細胞中JEV之prM和E確實經過醣化修飾,但經過突變的prM(dg) 和E(dg) 則無。 在昆蟲細胞中共同表現prM(dg)/E或prM/E(dg) 時, RSPs的分泌量分別只有wild-type之50% 和40%。 然而,當prM(dg)/E(dg) 在昆蟲細胞中共同表現時, RSPs更減到wild-type之30%。 可見prM和E的N-linked glycosylation對於RSPs的形成有相當大的影響。 為了探討以上的現象,我們進一步針對prM和E的醣化狀態對於prM-E之交互作用、以及對於其本身在昆蟲細胞中的穩定性等與RSPs形成有關之因素進行研究,發現以上兩者與N-linked glycosylation的存在與否無明顯的關係。 從上述的結果看來,N-linked glycosylation確實會影響RSPs的形成,其影響機制仍尚未確定,但已知並非影響prM與E在細胞中之穩定性、以及prM-E之間的交互作用。


    Japanese encephalitis is the most important cause of epidemic encephalitis worldwide, especially in eastern and southern Asia. In recent years, JE is spreading geographically and become a more concerned issue. The pathogen of JE, Japanese encephalitis virus (JEV) has two membrane glycoprotein prM and E, which each has one N-linked glycan. The formation of JEV prM-E complex is an important step for the biogenesis of immature virions and subviral particles. The N-linked glycans of JEV prM and E are crucial to viral replication and subviral particles formation. Co-expressing JEV prM and E proteins in insect cells infected by recombinant baculoviruses have been shown to produce recombinant subviral particles (RSPs) similar to virions. In order to analyze how the N-linked glycans affect the process of RSPs biosynthesis, wild-type and glycosylation-mutated prM and E proteins was expressed in Sf9 cells. By treating with the glycosidase PNGase F, it was confirmed that the wild-type JEV prM and E were N-linked glycosylated, while the glycosylation-mutants, prM(dg) and E(dg), were not. In the co-infection of prM(dg)/E and prM/E(dg), the secretion of RSPs was respectively reduced to 50% and 40% of the wild-type level. In the absence of N-linked glycans on both prM and E, the secretion of RSPs was more seriously decreased to 30% of the wild-type level. Furthermore, the N-linked glycans showed no significant relation to the stability, interaction of prM and E proteins, and helped the formation and the secretion of RSPs in some other uncertain mechanisms.

    中文摘要 I Abstract II Acknowledgments III Abbreviations IV 1. Introduction 1 1.1.Japanese encephalitis virus 1 1.2.Subviral particles 2 1.3.The effects of N-linked glycosylation 4 1.4.N-linked glycosylation on flavivirus prM and E protein 7 1.5.Virus-like particles production in baculovirus expression system 8 1.6. Scope of this thesis 11 2. Materials and Methods 12 2.1. Cell lines and viruses 12 2.1.1. Sf9 (Spodoptera frugiperda) cells 12 2.1.2. Vero cells and BHK-21 cells 12 2.1.3. E3.3 and 5B1 hybridoma cells 13 2.1.4. JEV strain CH2195LA 13 2.2. The tunicamycin treatment 13 2.3. Plaque assay 14 2.4. Construction of recombinant baculoviruses 14 2.5. Western blotting 15 2.6. PNGaseF glycosidase treatment of glycoprotein 16 2.7. Recombinant subviral particle production and purification 17 2.8. Enzyme-Linked Immunosorbent Assay (ELISA) 17 2.9. Transmission electron microscopy (TEM) 18 2.10. S35 isotope labeling and immunoprecipitatioin 18 2.11. Cycloheximide treatment 19 3. Results 20 3.1. Tunicamycin treatment eliminates N-linked glycosylation of prM and E of JEV CH2195LA 20 3.2. Site-directed mutagenesis on N-linked glycosylation site of JEV prM and E proteins 21 3.3. Recombinant subviral particles production in insect cells 23 3.4. The interaction of prM and E proteins in insect cells 25 3.5. The stability of prM and E proteins in insect cells 26 4. Discussion 28 References 32

    Ali, A., Avalos, R. T., Ponimaskin, E., and Nayak, D. P. (2000). Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J Virol 74(18), 8709-19.
    Allison, S. L., Stadler, K., Mandl, C. W., Kunz, C., and Heinz, F. X. (1995). Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J Virol 69(9), 5816-20.
    Arar, C., Carpentier, V., Le Caer, J. P., Monsigny, M., Legrand, A., and Roche, A. C. (1995). ERGIC-53, a membrane protein of the endoplasmic reticulum-Golgi intermediate compartment, is identical to MR60, an intracellular mannose-specific lectin of myelomonocytic cells. J Biol Chem 270(8), 3551-3.
    Back, N. K., Smit, L., De Jong, J. J., Keulen, W., Schutten, M., Goudsmit, J., and Tersmette, M. (1994). An N-glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization. Virology 199(2), 431-8.
    Banerjee, K. (1996). Emerging viral infections with special references to India. Indian J. Med. Res. 103, 177-200.
    Baumert, T. F., Ito, S., Wong, D. T., and Liang, T. J. (1998). Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J Virol 72(5), 3827-36.
    Beasley, D. W. (2005). Recent advances in the molecular biology of west nile virus. Curr Mol Med 5(8), 835-50.
    Beasley, D. W., Whiteman, M. C., Zhang, S., Huang, C. Y., Schneider, B. S., Smith, D. R., Gromowski, G. D., Higgs, S., Kinney, R. M., and Barrett, A. D. (2005). Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79(13), 8339-47.
    Benjouad, A., Gluckman, J. C., Montagnier, L., and Bahraoui, E. (1993). Specificity of antibodies produced against native or desialylated human immunodeficiency virus type 1 recombinant gp160. J Virol 67(3), 1693-7.
    Berger, I., Fitzgerald, D. J., and Richmond, T. J. (2004). Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22(12), 1583-7.
    Bolmstedt, A., Hemming, A., Flodby, P., Berntsson, P., Travis, B., Lin, J. P., Ledbetter, J., Tsu, T., Wigzell, H., Hu, S. L., and et al. (1991). Effects of mutations in glycosylation sites and disulphide bonds on processing, CD4-binding and fusion activity of human immunodeficiency virus envelope glycoproteins. J Gen Virol 72 ( Pt 6), 1269-77.
    Botarelli, P., Houlden, B. A., Haigwood, N. L., Servis, C., Montagna, D., and Abrignani, S. (1991). N-glycosylation of HIV-gp120 may constrain recognition by T lymphocytes. J Immunol 147(9), 3128-32.
    Choi, S. H., Kim, S. Y., Park, K. J., Kim, Y. J., and Hwang, S. B. (2004). Hepatitis C virus core protein is efficiently released into the culture medium in insect cells. J Biochem Mol Biol 37(6), 735-40.
    Corver, J., Ortiz, A., Allison, S. L., Schalich, J., Heinz, F. X., and Wilschut, J. (2000). Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology 269(1), 37-46.
    Courageot, M. P., Frenkiel, M. P., Dos Santos, C. D., Deubel, V., and Despres, P. (2000). Alpha-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J Virol 74(1), 564-72.
    Elshuber, S., Allison, S. L., Heinz, F. X., and Mandl, C. W. (2003). Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol 84(Pt 1), 183-91.
    Fausch, S. C., Da Silva, D. M., Eiben, G. L., Le Poole, I. C., and Kast, W. M. (2003). HPV protein/peptide vaccines: from animal models to clinical trials. Front Biosci 8, s81-91.
    Ferlenghi, I., Clarke, M., Ruttan, T., Allison, S. L., Schalich, J., Heinz, F. X., Harrison, S. C., Rey, F. A., and Fuller, S. D. (2001). Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell 7(3), 593-602.
    Fiedler, K., Parton, R. G., Kellner, R., Etzold, T., and Simons, K. (1994). VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. Embo J 13(7), 1729-40.
    Fonseca, B. A., Pincus, S., Shope, R. E., Paoletti, E., and Mason, P. W. (1994). Recombinant vaccinia viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. Vaccine 12(3), 279-85.
    Fournillier, A., Wychowski, C., Boucreux, D., Baumert, T. F., Meunier, J. C., Jacobs, D., Muguet, S., Depla, E., and Inchauspe, G. (2001). Induction of hepatitis C virus E1 envelope protein-specific immune response can be enhanced by mutation of N-glycosylation sites. J Virol 75(24), 12088-97.
    Fullekrug, J., Scheiffele, P., and Simons, K. (1999). VIP36 localisation to the early secretory pathway. J Cell Sci 112 ( Pt 17), 2813-21.
    Garcea, R. L., and Gissmann, L. (2004). Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr Opin Biotechnol 15(6), 513-7.
    Girard, C., Ravallec, M., Mariller, M., Bossy, J. P., Cahour, A., Lopez-Ferber, M., Devauchelle, G., Inchauspe, G., and Duonor-Cerutti, M. (2004). Effect of the 5' non-translated region on self-assembly of hepatitis C virus genotype 1a structural proteins produced in insect cells. J Gen Virol 85(Pt 12), 3659-70.
    Gomez-Puertas, P., Albo, C., Perez-Pastrana, E., Vivo, A., and Portela, A. (2000). Influenza virus matrix protein is the major driving force in virus budding. J Virol 74(24), 11538-47.
    Goto, A., Yoshii, K., Obara, M., Ueki, T., Mizutani, T., Kariwa, H., and Takashima, I. (2005). Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine 23(23), 3043-52.
    Guirakhoo, F., Heinz, F. X., and Kunz, C. (1989). Epitope model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology 169(1), 90-9.
    Hanna, S. L., Pierson, T. C., Sanchez, M. D., Ahmed, A. A., Murtadha, M. M., and Doms, R. W. (2005). N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol 79(21), 13262-74.
    Hara-Kuge, S., Ohkura, T., Seko, A., and Yamashita, K. (1999). Vesicular-integral membrane protein, VIP36, recognizes high-mannose type glycans containing alpha1-->2 mannosyl residues in MDCK cells. Glycobiology 9(8), 833-9.
    Harper, D. M., Franco, E. L., Wheeler, C., Ferris, D. G., Jenkins, D., Schuind, A., Zahaf, T., Innis, B., Naud, P., De Carvalho, N. S., Roteli-Martins, C. M., Teixeira, J., Blatter, M. M., Korn, A. P., Quint, W., and Dubin, G. (2004). Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364(9447), 1757-65.
    Hauri, H., Appenzeller, C., Kuhn, F., and Nufer, O. (2000). Lectins and traffic in the secretory pathway. FEBS Lett 476(1-2), 32-7.
    Helenius, A., and Aebi, M. (2001). Intracellular functions of N-linked glycans. Science 291(5512), 2364-9.
    Huppa, J. B., and Ploegh, H. L. (1998). The eS-Sence of -SH in the ER. Cell 92(2), 145-8.
    Imperiali, B., and O'Connor, S. E. (1999). Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol 3(6), 643-9.
    Jeong, S. H., Qiao, M., Nascimbeni, M., Hu, Z., Rehermann, B., Murthy, K., and Liang, T. J. (2004). Immunization with hepatitis C virus-like particles induces humoral and cellular immune responses in nonhuman primates. J Virol 78(13), 6995-7003.
    Kojima, A., Yasuda, A., Asanuma, H., Ishikawa, T., Takamizawa, A., Yasui, K., and Kurata, T. (2003). Stable high-producer cell clone expressing virus-like particles of the Japanese encephalitis virus e protein for a second-generation subunit vaccine. J Virol 77(16), 8745-55.
    Konishi, E., Fujii, A., and Mason, P. W. (2001). Generation and characterization of a mammalian cell line continuously expressing Japanese encephalitis virus subviral particles. J Virol 75(5), 2204-12.
    Konishi, E., and Mason, P. W. (1993). Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J Virol 67(3), 1672-5.
    Konishi, E., Pincus, S., Paoletti, E., Shope, R. E., Burrage, T., and Mason, P. W. (1992). Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 188(2), 714-20.
    Koutsky, L. A., Ault, K. A., Wheeler, C. M., Brown, D. R., Barr, E., Alvarez, F. B., Chiacchierini, L. M., and Jansen, K. U. (2002). A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347(21), 1645-51.
    Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., and Hendrickson, W. A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393(6686), 648-59.
    Latham, T., and Galarza, J. M. (2001). Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J Virol 75(13), 6154-65.
    Lee, J., Park, J. S., Moon, J. Y., Kim, K. Y., and Moon, H. M. (2003). The influence of glycosylation on secretion, stability, and immunogenicity of recombinant HBV pre-S antigen synthesized in Saccharomyces cerevisiae. Biochem Biophys Res Commun 303(2), 427-32.
    Lin, C. W., and Wu, S. C. (2003). A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites. J Virol 77(4), 2600-6.
    Lin, Y. J., and Wu, S. C. (2005). Histidine at residue 99 and the transmembrane region of the precursor membrane prM protein are important for the prM-E heterodimeric complex formation of Japanese encephalitis virus. J Virol 79(13), 8535-44.
    Maranga, L., Cruz, P. E., Aunins, J. G., and Carrondo, M. J. (2002). Production of core and virus-like particles with baculovirus infected insect cells. Adv Biochem Eng Biotechnol 74, 183-206.
    Modis, Y., Ogata, S., Clements, D., and Harrison, S. C. (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100(12), 6986-91.
    Mortola, E., and Roy, P. (2004). Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett 576(1-2), 174-8.
    Mukhopadhyay, S., Kuhn, R. J., and Rossmann, M. G. (2005). A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3(1), 13-22.
    Nichols, W. C., Seligsohn, U., Zivelin, A., Terry, V. H., Hertel, C. E., Wheatley, M. A., Moussalli, M. J., Hauri, H. P., Ciavarella, N., Kaufman, R. J., and Ginsburg, D. (1998). Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93(1), 61-70.
    Noad, R., and Roy, P. (2003). Virus-like particles as immunogens. Trends Microbiol 11(9), 438-44.
    Op De Beeck, A., Molenkamp, R., Caron, M., Ben Younes, A., Bredenbeek, P., and Dubuisson, J. (2003). Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope. J Virol 77(2), 813-20.
    Petry, H., Goldmann, C., Ast, O., and Luke, W. (2003). The use of virus-like particles for gene transfer. Curr Opin Mol Ther 5(5), 524-8.
    Pincus, S., Mason, P. W., Konishi, E., Fonseca, B. A., Shope, R. E., Rice, C. M., and Paoletti, E. (1992). Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology 187(1), 290-7.
    Popova, R., and Zhang, X. (2002). The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection. Virology 294(1), 222-36.
    Pratap, J., Rajamohan, G., and Dikshit, K. L. (2000). Characteristics of glycosylated streptokinase secreted from Pichia pastoris: enhanced resistance of SK to proteolysis by glycosylation. Appl Microbiol Biotechnol 53(4), 469-75.
    Pushko, P., Tumpey, T. M., Bu, F., Knell, J., Robinson, R., and Smith, G. (2005). Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 23(50), 5751-9.
    Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., and Harrison, S. C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375(6529), 291-8.
    Schalich, J., Allison, S. L., Stiasny, K., Mandl, C. W., Kunz, C., and Heinz, F. X. (1996). Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J Virol 70(7), 4549-57.
    Sodora, D. L., Cohen, G. H., Muggeridge, M. I., and Eisenberg, R. J. (1991). Absence of asparagine-linked oligosaccharides from glycoprotein D of herpes simplex virus type 1 results in a structurally altered but biologically active protein. J Virol 65(8), 4424-31.
    Spiro, R. G., Zhu, Q., Bhoyroo, V., and Soling, H. D. (1996). Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem 271(19), 11588-94.
    Stadler, K., Allison, S. L., Schalich, J., and Heinz, F. X. (1997). Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71(11), 8475-81.
    Stanley, M. A. (2003). Progress in prophylactic and therapeutic vaccines for human papillomavirus infection. Expert Rev Vaccines 2(3), 381-9.
    Vorndam, V., Mathews, J. H., Barrett, A. D., Roehrig, J. T., and Trent, D. W. (1993). Molecular and biological characterization of a non-glycosylated isolate of St Louis encephalitis virus. J Gen Virol 74 ( Pt 12), 2653-60.
    Ware, F. E., Vassilakos, A., Peterson, P. A., Jackson, M. R., Lehrman, M. A., and Williams, D. B. (1995). The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 270(9), 4697-704.
    Winkler, G., Heinz, F. X., and Kunz, C. (1987). Studies on the glycosylation of flavivirus E proteins and the role of carbohydrate in antigenic structure. Virology 159(2), 237-43.
    Wormald, M. R., and Dwek, R. A. (1999). Glycoproteins: glycan presentation and protein-fold stability. Structure 7(7), R155-60.
    Wu, S. C., and Lee, S. C. (2001). Complete nucleotide sequence and cell-line multiplication pattern of the attenuated variant CH2195LA of Japanese encephalitis virus. Virus Res 73(1), 91-102.
    Wu, S. C., Lian, W. C., Hsu, L. C., and Liau, M. Y. (1997). Japanese encephalitis virus antigenic variants with characteristic differences in neutralization resistance and mouse virulence. Virus Res 51(2), 173-81.
    Wu, S. F., Lee, C. J., Liao, C. L., Dwek, R. A., Zitzmann, N., and Lin, Y. L. (2002). Antiviral effects of an iminosugar derivative on flavivirus infections. J Virol 76(8), 3596-604.
    Xiang, J., Wunschmann, S., George, S. L., Klinzman, D., Schmidt, W. N., LaBrecque, D. R., and Stapleton, J. T. (2002). Recombinant hepatitis C virus-like particles expressed by baculovirus: utility in cell-binding and antibody detection assays. J Med Virol 68(4), 537-43.
    Yamshchikov, V. F., and Compans, R. W. (1993). Regulation of the late events in flavivirus protein processing and maturation. Virology 192(1), 38-51.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE