簡易檢索 / 詳目顯示

研究生: 林儒政
Ru-Zheng, Lin
論文名稱: 電漿增進自製碳纖維紙電極電化學特性於食品添加物溶液之分析
Improvement of electrochemical properties of self-made carbon fiber paper electrode by plasma and analysis of food additives
指導教授: 江慧真
Hui-Jean, Chiang
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2010
畢業學年度: 98
語文別: 中文
中文關鍵詞: 電漿修飾維他命C沒食子酸咖啡因水楊酸同時檢測
外文關鍵詞: plasma modification, Ascorbic acid, Gallic acid, Caffeine, Salicylic acid, Simultaneous determination
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用網印碳膠電極進行氧電漿修飾,並利用循環伏安法測定黃血 鹽及混合溶液,得知此電極之反應性及靈敏度都呈現較差的狀況。因 此,本文將利用自製的碳纖維紙電極作為主要研究,並藉由電漿修飾 探討表面結構特性及電化學伏安法靈敏度之測定。

    比較不同氣體電漿(氨、氮、氧)處理對碳纖維紙電極修飾的影 響。伏安法測定溶液時,溶液擴散現象直接影響了碳纖維紙的訊號應 答。在接觸角的測定中,發現氧、氮電漿修飾後皆屬於親水的性質, 但同時檢測目標物時,發現經氧電漿修飾後的碳纖維紙電極明顯提昇 了氧化電流之反應性。因此,本實驗將針對氧電漿修飾的功率及時間 來做探討。

    分析部分主要利用FT-IR測量表面官能基的結構存在及其影響;以亞甲基藍吸附法搭配UV-Vis估算出表面酸性(-COOH、Phenolic-OH)官能基之含量;拉曼光譜分析則探討電漿修飾後碳纖維紙表面碳-碳結 構的改變對其電子傳導的影響;利用原子力顯微鏡探討表面結構形貌 及計算表面粗糙度。

    循環伏安法的測定中,主要測量食品飲料添加物中常見的化合物 AA、GA、CA,利用氧電漿修飾碳纖維紙電極進行量測,得知混合溶 液時所存在的各別氧化電位,而實驗結果也得知,經修飾後的碳纖維 紙電極能在微量分析中有顯著的高靈敏應答之能力。最後,本實驗嘗 試以禁用防腐劑水楊酸來做測定,可發現當混合物AA、GA、CA、 SA同時檢測時,也能明顯的區分各別氧化電位。


    By using screen-printing carbon paste electrode (SPCE) modified by oxygen plasma, and Cyclic Voltammetry to determine ferricyanide and the mixed solution, results show that both the reactivity and sensitivity of electrode are poor.Therefore, this thesis will focus on the study of self- made carbon fiber paper electrode, and the discussion of the characteristics of surface structure according to plasma modification, and the determination of electrochemical voltammetric sensitivity.

    After the comparison of the influence of different plasma gas (ammonia, nitrogen, oxygen) treatment on carbon fiber paper electrode, we find that it is in the determination of the mixed solution by Cyclic Voltammetry that the solution diffusion directly affects the response of carbon fiber paper. In the determination of contact angle, we find that carbon fiber paper becomes more hydrophilic after oxygen, and nitrogen plasma modification; meanwhile, in the detection of targets, it’s found carbon fiber paper electrode modified by oxygen plasma significantly has higher reactivity of the oxidation current. Therefore, this study will focus on the power and time effect of oxygen plasma modification.

    The study is mainly to measure the surface functional groups of structure and its influence by using FT-IR, by using Methylene blue adsorption method with UV-Vis to estimate the content of the surface acidic functional groups ( -COOH、 Phenolic-OH ), and by using Raman spectroscopy analysis to discuss the influence of changed carbon - carbon structure of carbon fiber paper surface modified by plasma on electrontransport. Finally, the study also discusses the surface structure morphology of carbon fiber paper and calculates surface roughness by AFM.

    In the determination of Cyclic voltammetry, the study is to measure common compounds AA, GA, CA in food and beverage additives. After the measurement by using carbon fiber paper electrode modified by oxygen plasma, we know the existence of individual oxidation potential in mixed solution. Experimental results also show that modified electrodes in Microanalysis can be highly sensitive in response. Finally, in this study, we try to disable the preservatives in the determination of salicylic acid, and in the determination of mixture of AA, GA, CA, SA, we also know the existence of individual oxidation potential.

    中文摘要 I 英文摘要 II 致謝 IV 目錄 V 圖目錄. IX 1-1 網版印刷碳膠電極介紹(Screen-printed carbon paste electrode,SPCE) 1 1-1-1 表面修飾網版印刷碳膠電極 1 1-2 碳纖維紙介紹 2 1-2-1 碳纖維紙表面結構. 2 1-2-1-1 碳纖維紙表面碳材石墨化 3 1-2-1-2 拉曼光譜的應用原理 4 1-3 電化學生物傳感器 5 1-3-1 安培型生物傳感器 5 1-4 電漿 7 1-4-1 電漿的產生 7 1-4-2 電漿中原子的碰撞 8 1-4-2-1 非彈性碰撞的化學反應 8 1-4-3 電漿的參數 11 1-4-4 離子轟擊 13 1-5 亞甲基藍(Methylene blue ,MB+)吸付 13 1-6 食品添加物 14 1-6-1 咖啡因(Caffeine) 14 1-6-2 沒食子酸(Gallic acid 15 1-6-3 維他命C(Ascorbic acid) 16 1-7 防腐劑 17 1-8 食品添加物檢驗之方法 18 第二章 材料與實驗方法 2-1 實驗藥品與儀器25 2-2 實驗方法28 2-2-1 氧電漿修飾網印碳膠電極28 2-2-2 循環伏安法測定氧電漿修飾網印碳膠電極之反應性28 2-2-2-1黃血鹽(鐵氫化鉀)28 2-2-2-2測定混合溶液之反應性28 2-2-3 碳纖維紙電極製作 29 2-2-4 電漿修飾碳纖維紙電極 29 2-2-5 水接觸角測定30 2-2-6 傅立葉紅外光譜儀(FT-IR)測定30 2-2-7 亞甲基藍(Methylene blue ,MB+)吸附測定30 2-2-8 循環伏安法測定碳纖維紙電極之反應性31 2-2-9 循環伏安法測定不同氣體電漿修飾碳纖維紙電極 31 2-2-10 循環伏安法測定不同條件氧電漿修飾碳纖維紙電極之反應性 31 2-2-10-1 不同氧電漿修飾功率及時間 31 2-2-10-2 黃血鹽(亞鐵氰化鉀 32 2-2-10-3 測定混合溶液之反應性 32 2-2-10-3-1 製備同時檢測 Ascorbic acid、Caffeine濃度 32 2-2-10-3-2 製備同時檢測 Ascorbic acid、 Gallic acid濃度 33 2-2-10-3-3 製備同時檢測 Caffeine、 Gallic acid濃度33 2-2-10-3-4 製備同時檢測Ascorbic acid、 Gallic acid、Caffeine濃度 34 2-2-10-3-5 製備同時檢測Ascorbic acid、 Gallic acid、affeine、 Salicylic acid 濃度 34 第三章 結果與討論 3-1 氧電漿修飾網印碳膠電極 36 3-1-1 拉曼光譜分析(Raman spectrum 36 3-1-2 原子力顯微鏡分析(Atomic force microscopy, AFM) 36 3-1-3 循環伏安法測定氧電漿修飾網印碳膠電極之反應性 37 3-1-3-1 黃血鹽(亞鐵氰化鉀 37 3-1-3-2 測定混合溶液之反應性 37 3-2 碳纖維表面之分析 38 3-2-1 水接觸角 38 3-2-2 拉曼光譜分析 38 3-2-3 傅立葉紅外光譜儀分析(FT-IR) 38 3-2-4 原子力顯微鏡(Atomic force microscopy, AFM) 39 3-3 修飾碳纖維紙表面 39 3-3-1 電漿修飾碳纖維紙表面 40 3-3-1-1水接觸角的測定 40 3-3-1-2 傅立葉紅外光譜儀分析(FT-IR 40 3-3-1-3 循環伏安法(CV) 41 3-4 氧電漿修飾碳纖維紙表面 42 3-4-1 電漿射頻功率、修飾時間之影響 42 3-4-1-1 電漿射頻功率 42 3-4-1-2 電漿修飾時間43 3-4-2 水接觸角的測定43 3-4-3 亞甲基藍(Methylene blue ,MB+)吸附 43 3-4-4 拉曼光譜分析(Raman spectrum 45 3-4-5 表面影像分析 45 3-4-5-1 原子力顯微鏡(Atomic force microscopy, AFM) 45 3-4-6 循環伏安法(CV) 46 3-4-6-1 循環伏安法測定黃血鹽(亞鐵氰化鉀) 46 3-4-6-2 循環伏安法測定Ascorbic acid、 Gallic acid、Caffeine.47 3-4-6-2-1 同時檢測 Ascorbic acid、Caffeine濃度47 3-4-6-2-2 同時檢測 Ascorbic acid、Gallic Acid濃度48 3-4-6-2-3 同時檢測Caffeine、Gallic Acid濃度48 3-4-6-3 循環伏安法測定Ascorbic acid、 Gallic acid、Caffeine、Salicylic acid 49 3-4-6-4 循環伏安法測定碳纖維紙電極之再現性 49 第四章 結論 51 參考文獻 74 圖目錄 圖1-1 碳材上常見之氧官能基 20 圖1-2 各類型碳之拉曼光譜 20 圖1-3 碳材表面官能基分析 21 圖1-4 石墨拉伸形式 22 圖1-5 分子振動激發機制的圖解:(a)分子振動激發的過程(b)分子振動激發橫截面積與電子能量的關係 23 圖1-6 電漿放電中產生反應物種的全部反應過程 23 圖1-7 電漿機台結構簡圖 24 圖2-1 碳電極製作流程圖 35 圖3-1 網印碳膠電極表面碳-碳結構之拉曼光譜分析 54 圖3-2 網印碳膠電極與碳纖維紙電極表面碳-碳結構之拉曼光譜分析比較 54 圖3-3 網印碳膠電極表面原子力顯微鏡分析 55 圖3-4 氧電漿修飾網印碳膠電極黃血鹽分析之CV圖 56 圖3-5 不同電漿修飾水接觸角變化 56 圖3-6 氧電漿不同修飾時間水接觸角變化 56 圖3-7 未經電漿處理碳纖維紙之FT-IR圖 57 圖3-8 氧電漿修飾碳纖維紙之FT-IR圖譜 57 圖3-9 氮電漿修飾碳纖維紙之FT-IR圖譜 58 圖3-10 氨電漿修飾的碳纖維紙之FT-IR圖譜 58 圖3-11 不同氣體電漿修飾碳纖維紙電極分析AA、CA、GA之CV圖 59 圖3-12 氧電漿不同功率修飾碳纖維紙電極分析AA、CA、GA之CV圖58 59 圖3-13 氧電漿不同時間修飾碳纖維紙電極分析AA、CA、GA之CV圖 60 圖3-14 碳纖維紙表面碳-碳結構之拉曼光譜分析 60 圖3-15 亞甲基藍鹼性溶液吸附氧電漿修飾碳纖維紙之UV-Vis光譜儀分析 61 圖3-16 稀釋亞甲基藍加入氫氧化鈉濃度之線性回歸圖 61 圖3-17 原子力顯微鏡碳纖維結構之1μm分析 62 圖3-18 原子力顯微鏡碳纖維結構之500nm分析 63 圖3-19 原子力顯微鏡碳纖維表面垂直剖面分析 64 圖3-20 原子力顯微鏡碳纖維表面粗糙度分析 65 圖3-21 氧電漿修飾碳纖維紙電極分析黃血鹽之CV圖 66 圖3-22 Ascorbic acid、 Gallic acid、Caffeine之氧化電位 66 圖3-23 Ascorbic acid、 Caffeine之氧化電位 67 圖3-24 Ascorbic acid、 Gallic acid之氧化電位 68 圖3-25 Gallic acid、 Caffeine之氧化電位 69 圖3-26 Ascorbic acid、 Gallic acid、Caffeine、 Salicylic acid之氧化還原電位 70 圖3-27 Ascorbic acid、 Gallic acid、Caffeine、 Salicylic acid之氧化還原電位 70 圖3-28 氧電漿修飾碳纖維紙電極再現性之CV圖 71

    參考文獻
    1. P Hart, A Crew, E Crouch, KC Honeychurch, RM Pemberton: Some recent designs and developments of screen-printed carbon electrochemical sensors/ biosensors for biomedical, environmental, and industrial analyses. Analytical Letters (2004) 37:789.

    2. RN Adams : Carbon paste electrodes. Analytical Chemistry (1958) 28:1576.

    3. RG Evans, CE Banks, RG Compton : Amperometric detection of glucose
    using self-catalytic carbon paste electrodes. Analyst (2004) 129:428.

    4. KR Rogers, JY Becker, J Cembrano : Improved selective electrocatalytic oxidation of phenols by tyrosinase-based carbon paste electrode biosensor. Electrochimica Acta (2000) 45:4373.

    5. J.-M. Zen and S.-Y. Huang, Anal. Chim. Acta (1994), 296, 77.

    6. J.-M. Zen and J.-W. Wu, Electroanal. (1997), 9(4),269 .

    7. J.-M. Zen,Y.-Y Lai,G. Ilangovan and A.-S. Kumar,Electronal. (2000),4,280.

    8. J.-M. Zen,A. S. Kumar and H.-W. Chen, Electroanal. (2000), 7, 12.

    9. J.-M. Zen,J.-J. Jou and A. S. Kumar, Analyst (1998),123,1345.

    10.Kinoshita K., Carbon: Electrochemical and Physicochemical Properties (1988), John Wiley & Sons, New York.
    73

    11.Boehm H.P., Diehl E., Heck W., Sappok R., Surface oxides of carbon (1964), Angew Chem Internat Edit, 3, 669.

    12.Barton S.S., Boulton G.L., Harrison B.H., Carbon (1972), 10, 391.

    13.Noh J.S., Schwarz J.A., Carbon (1990) , 28, 675.

    14.Lizzio A.A., Radovic L.R., Ind. Eng. Chem. Res. (1991), 30, 1735.

    15.Otake Y., Jenkins R.G.., Carbon (1993) , 31, 109.

    16.Shin S., Jang J., Yoon S.H., Mochida I., Carbon (1997) , 35, 1739.

    17.Mul G., Neeft J.P.A., Kapteijn F., Moulijn J.A., Carbon (1998), 36, 1269.

    18.Ishitani A., Carbon (1981), 19, 269.

    19.Viswanathan H., Rooke M.A., Sherwood P.M.A., Surface Interface Analysis (1997), 25, 409.

    20.Lee W.H., Kim J.Y., Ko Y.K., Reucroft P.J., Zondlo J.W., Appl. Surface. Sci. (1999), 141, 107.

    21.Miguel A. Montes-Mora ́n, Robert J. Young* ,Carbon 40 (2002), 845–855.

    22.柯以侃主編,儀器分析 (1997),文京圖書有限公司,台北台灣。

    23.J. Robertson, “Diamond-like amorphous carbon”, Mater. Sci. Eng. (2002) R, 37, 129.
    74

    24.Stephanie Reich., Christian Thomsen ,”Raman spectroscopy of graphite”, the royal society (2004),1415,2004.

    25.M. A. Capano, N. T. McDeutt, R. K. Singh, and F. Qian, “Characterization of amorphous carbon thin films,” J. Vac. Sci. Technol. A (1996), 14[2], 431.

    26.M. A. Tamor and W. C. Vassel, “Raman ''fingerprinting'' of amorphous carbon films,” J. Appl. Phys. (1994), 76[6], 3823.

    27.H. C. Tasi, D. B. Bogy, M. K. Kundmann, D. K. Veirs, M. R. Hilton and S. T. Mayer, “Structure and properties of sputtered carbon overcoats on rigid magnetic media disks,” J. Vac. Sci. Technol. A 6[4] (1988), 2307.

    28.E
    Bakker: Electrochemical sensors. Analytical Chemistry (2004) 76:3285.

    29.DR Theavenot, K Toth, RA Durst, GS Wilson : Electrochemical biosensors: definitions and classification. International Union of Pure and Applied Chemistry (1999) 71:2333.

    30.WO Ho, S Krause, CJ McNeil, JA Pritchard, RD Armstrong, D Athey, K Rawson : Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation. Analytical Chemistry (1999) 71:1940.

    31.M Shamsipur, F Jalali, S Ershad: Preparation of a diclofenac potentiometric sensor and its application to pharmaceutical analysis and to drug recovery from biological fluids. Journal of Pharmaceutical and Biomedical Analysis (2005) 37:943.

    32.田福助主編,電化學-理論與應用
    (1985),高立圖書有限公司,台北台灣。
    75

    33.J. A. Plambeck, Electroanalytical Chemistry (1982), Wiley-Interscience.

    34.D. A. Skoog and J. J. Leary, Principles of Instrumental Analysis, 6th ed.
    (1992), Saunders College Publishing.

    35.Hong Xiao., “Introduction to semiconductor manufacturing
    technology”(2001) prentice hallint’t. Taiwan.

    36.周麗新,薄膜工程學(2000),中國材料學會網頁。

    37.C. U. PITTMAN, JR,* ,”Oxygen plasma and isobutylene plasma treatments of carbon fibers: Determination of surface functionality and effects on composite properties” Elsevier Science Ltd(1997) ,MOOS-6223(97)00147-4.

    38.曾道一、賈宜琛,食品科學概論(第三版)
    (2008)。

    39.Mundra adinarayana and Maram Ravikumar, “Oxidation of caffeine by phosphate radical anion in aqueous solution under anoxic conditions”, Department of Chemistry (2000),Osmania University, Hyderabad 500 007, India.

    40.F. Pospisil, “Oxidation of Gallic Acid by an Enzyme Preparation Isolated from the Culture Medium of Nicotiana tabacum Cell Suspension”BIOLOGIA PLANTARU(PRAHA) (1983).

    41.Horace W. and Jeffreys,”The oxidation of ascorbic acid and its reduction in vitro and in vivo”,Journal of Biological Chemistry (2008),117 (1). pp. 237-279. ISSN.
    76

    42.S. Hayat, A. Ahmad, “Salicylic acid - A Plant Hormone”.Springer (2007),ISBN 1402051832.

    43.Taiz and Zeiger.Plant Physiology Third Edition(2002).p.306.

    44.Aicheng Chen.”Photoelectrochemical oxidation of salicylic acid and salicylaldehyde on titanium dioxide nanotube arrays”,Electrochimica Acta (2009), 3799–3805.

    45.Wei-De Zhang & Bin Xu ,”Electrochemical oxidation of salicylic acid at well- aligned multiwalled carbon nanotube electrode and its detection”,Solid State Electrochem(2010),14:1713–1718.

    46.張志杰,”A Study on the Simultaneous Determination of Twelve Food Preservatives by Gas Chromatograph - Flame Ionization Detector”,National Pingtung University of Science&Technology Department of Food Science (2007).

    47.N. Simon a,⁎, C. Decorse-Pascanut a,”Nitrogenation of boron doped diamond: Comparison of an electrochemical treatment in liquid ammonia
    and a NH3/N2 plasma”,Diamond & Related Materials(2009),890–894.

    48.ME R., Z Galus, RN Adams : Graphite paste electrodes effects of paste composition and surface states on electron-transfer rates,Journal of Electroanalytical Chemistry (1983),143:89.

    49.M. Boujtita a*,C. Thobie-Gautiera, ”Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces”,Electrochimica Acta(2009), 3026–3032.
    77

    50.Alenka Vesel∗, Ita Junkar, “Surface modification of polyester by oxygen- and nitrogen-plasma treatment”,Surface and interface analysis(2008),DOI
    10.1002/sia.2923.

    51.R.J. Younga,*,M.A. Montes-Mora ́na,b. “Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres”,Composites: Part A(2001),361–371.

    52.Rajendra M. Patrikar*, ”Modeling and simulation of surface roughness”, Applied Surface Science(2004),213–220.
    53.www.goldenhope.com.tw ,“表面粗糙度的之標示法”,科威那科技公司網 站介紹

    54.Xiao-Ya Hu∗,”Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode”, Sensors and Actuators B: Chemical(2009),174–181.

    55.Abraham John *,”Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode”,Analytical Biochemistry (2009),65–72.

    56.Zhousheng Yang *,”Electrochemical behavior of gallic acid interaction with DNA and detection of damage to DNA”,Sensors and Actuators B: Chemical (2009), 174–181.

    57.Lingbo Qu a,b,*,”Nafion/multi-wall carbon nanotubes composite film coated glassy carbon electrode for sensitive determination of caffeine”,Journal of Electroanalytical Chemistry(2010),77–82.
    78

    58.Wei-De Zhang & Bin Xu,”Electrochemical oxidation of salicylic acid at well- aligned multiwalled carbon nanotube electrode and its detection”Solid State Electrochem(2010),14:1713–1718.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE