研究生: |
左璿 Tso, Shuen |
---|---|
論文名稱: |
硫化鎘-氧化鋅殼層結構奈米線與硫化鎘-硫化亞銅殼層結構奈米線之產氫應用 CdS-ZnO Core-Shell Nanowires and CdS-Cu2S Core-Shell Nanowires for Hydrogen Generation |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: |
吳文偉
Wu, Wen-Wei 呂明諺 Lu, Ming-Yen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 光催化 、產氫 、硫化鎘 、奈米線 |
外文關鍵詞: | photocatalyst, hydrogen generation, CdS, nanowires |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從1970年代以來,隨著石化燃料的枯竭與環保意識的抬頭,對再生能源的需求越來越急迫。除了太陽能、風力發電….等,氫能一直被視為是下個世代最重要的能源之一。本實驗設計了硫化鎘-氧化鋅與硫化鎘-硫化亞銅殼層結構奈米線作為光催化劑以進行產氫之應用。首先,使用三區加熱的擴散爐成長出單晶的硫化鎘奈米線,再利用交流濺鍍的方式成長出氧化鋅的外殼。另一方面,利用陽離子交換的方法將硫化鎘奈米線的外層置換成硫化亞銅。使用以上兩種方法成功製備出硫化鎘-氧化鋅與硫化鎘-硫化亞銅殼層結構奈米線。上述奈米線使用了掃描式電子顯微鏡、穿透式電子顯微鏡、X光繞射儀與能量色散X-射線光譜來確定其結構;使用了光致發光譜與紫外光-可見光譜儀來分析其能隙與光學性質;使用了Shimadzu GC-2014氣相沈積儀來分析其氫氣的產量。相較於硫化鎘奈米線,硫化鎘-氧化鋅殼層結構奈米線與硫化鎘-硫化亞銅殼層結構奈米線之氫氣產率分別提升約100倍與10倍。本實驗展現了能階的編排對載子傳遞的重要性,同時為光催化產氫的領域開闢了一個新的方向。
With the increasing awareness of environmental issues, the renewable energy production has become urgent. Hydrogen is considered to be the promising fuel for the next generation. In this work, we construct novel nano-structures for hydrogen generation. CdS-ZnO core-shell nanowires and CdS-Cu2S core-shell nanowires were synthesized. First, crystalline CdS nanowires were synthesized in a three heating zone diffusion furnace through a VLS growth method. The ZnO shell was deposited with RF sputtering, and the Cu2S shell was achieved with cation exchange method. The core-shell nanowires have been examined by scanning electron microcopy, transmission electron microcopy, X-ray diffraction and energy dispersive spectroscopy to confirm their crystal structure. Photoluminescence and UV-visible analysis were used to examine their band gap and optical properties. A Shimadzu GC-2014 was used to identify and measure the amount of hydrogen gas produced by CdS-ZnO core-shell nanowires and CdS-Cu2S core-shell nanowires. Compared to CdS nanowires, the hydrogen generating activity of CdS-ZnO and CdS-Cu2S core-shell nanowires improved more than 2 orders and 1 order in magnitude, respectively. This experiment verifies the importance and usefulness of band alignment in structure design and opens up a new path for photocatalyst for hydrogen generation.
References
[1] “Annual energy outlook 2016 with projections to 2040,” U.S. Energy Information Administration, US Department of Energy (2016).
[2] Wyszynski, Miroslaw L.; Megaritis, Thanos; Lehrle, Roy S, “Hydrogen from exhaust gas fuel reforming: greener, leaner and smoother engines,” Future Power Systems Group, The University of Birmingham (2001).
[3] Luca Bertuccioli, et al. "Development of water electrolysis in the European union" Client Fuel Cells and Hydrogen Joint Undertaking, European Union (2014).
[4] Yongquan Qu, Xiangfeng Duan, “Progress, challenge and perspective of heterogeneous photocatalysts,” Chem. Soc. Rev. 42, pp.2568-2580 (2013).
[5] K.R. Catchpole, A. Polman, “Plasmonic solar cells,” Optics Express 16, 21794 (2008).
[6] Jiaming Hao, Jing Wang, Xianliang Liu, Willie J. Padilla, Lei Zhou, Min Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Applied Physics Letters. 96, 251104 (2010).
[7] Matthew E. Stewart, Christopher R. Anderton, Lucas B. Thompson, Joana Maria, Stephen K. Gray, John A. Rogers, Ralph G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, pp.494−521 (2008).
[8] Suljo Linic, Phillip Christopher, David B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nature Materials 10, pp.911–921 (2011).
[9] Hailong Zhou, Yongquan Qu, Tahani Zeid, Xiangfeng Duan,”Towards highly efficient photocatalysts using semiconductor nanoarchitectures,” Energy Environ. Sci. 5, pp.6732–6743 (2012).
[10] Kudo Akihiko, Kato Hideki,Issei Tsuji, "Strategies for the development of visible-light-driven photocatalysts for water splitting," Chemistry Letters. 33, pp.1534-1539 (2004).
[11] Sidney Perkowitz, “Empire of light: a history of discovery in science and art,” Joseph Henry Press, (1998).
[12] Liwu Zhang, Hanyun Cheng, Ruilong Zong, and Yongfa Zhu, “Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity,” J. Phys. Chem. C 113, pp.2368–2374 (2009).
[13] Rundiger Memming, Bertel Kastening, Dieter Meissner, “Photoelectrochemistry of cadmium sulfide. 1. reanalysis of photocorrosion and flat-band potential,” J. Phys. Chem. 92, pp.3476-3483 (1988).
[14] J. Tersoff, "Theory of semiconductor heterojunctions: the role of quantum dipoles," Physical Review B. 30, pp.4874-4877 (1984).
[15] Yajun Wang, Qisheng Wang, Xueying Zhan, Fengmei Wang, Muhammad Safdar, Jun He, “Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review,” Nanoscale. 5, pp. 8326–8339 (2013).
[16] Sergei A. Ivanov, Andrei Piryatinski, Jagjit Nanda, Sergei Tretiak, Kevin R. Zavadil, William O. Wallace, Don Werder, Victor I. Klimov, “Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties,” J. Am. Chem. Soc. 129, pp.11708-11719 (2007).
[17] Neimantas Vainorius, Anders Gustafsson, Kimberly A. Dick, Lars Samuelson, Mats-Erik Pistol1, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Physical Review B. 89, pp.165423 (2014).
[18] Youngjo Tak, Suk Joon Hong, Jae Sung Lee, Kijung Yong, “Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion,” J. Mater. Chem. 19, pp.5945-5951 (2009).
[19] Hana Sim, Jeongmin Lee, Seongjae Cho, Eou-Sik Cho, Sang Jik Kwon, “A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application,” Journal of Semiconductor Technology and Science 15, pp.267-275 (2015).
[20] A. Grier, A. Valavanis, C. Edmunds, J. Shao, J. D. Cooper, G. Gardner, M. J. Manfra, O. Malis, D. Indjin, Z. Ikonić, P. Harrison, “Coherent vertical electron transport and interface roughness effects in AlGaN/GaN intersubband devices,” Journal of Applied Physics 118, 224308 (2015).
[21] Caofeng Pan, Simiao Niu, Yong Ding, Lin Dong, Ruomeng Yu, Ying Liu, Guang Zhu, and Zhong Lin Wang, “Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect,” Nano Lett.12, pp.3302−3307 (2012).
[22] Walter A. Harrison, “Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond,” Freeman, (1980).
[23] S. Noor Mohammad, “Analysis of the vapor–liquid–solid mechanism for nanowire growth and a model for this mechanism,” Nano Lett. 8, pp.1532-1538, (2008).
[24] Yiying Wu, Peidong Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc. 123, pp.3165-3166 (2001).
[25] P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Jr, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Applied Physics Letters. 82, pp.1117-1119 (2003).
[26] Dong Hee Son, Steven M. Hughes, Yadong Yin, A. Paul Alivisatos, “Cation exchange reactions in ionic nanocrystals,” Science. 306, pp.1009-1012 (2004).
[27] Yewu Wang, Guowen Meng, Lide Zhang, Changhao Liang, Jun Zhang, ”Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence,” Chem. Mater. 14, pp.1773-1777 (2002).
[28] Yanwu Zhu, Hendry Izaac Elim, Yong-Lim Foo, Ting Yu, Yanjiao Liu, Wei Ji, Jim-Yang Lee, Zexiang Shen, Andrew Thye-Shen Wee, John Thiam-Leong Thong, Chorng-Haur Sow, “Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching,” Adv. Mater. 18, pp.587–592 (2006).
[29] Eunpyo Hong, Duckchen Kim, Jung Hyeun Kim, “Heterostructured metal sulfide (ZnS–CuS–CdS) photocatalyst for high electron utilization in hydrogen production from solar water splitting,” Journal of Industrial and Engineering Chemistry, 20, pp.3869–3874 (2014).
[30] Xu Zong, Hongjian Yan, Guopeng Wu, Guijun Ma, Fuyu Wen, Lu Wang, and Can Li, “Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation,” J. Am. Chem. Soc. 130, pp.7176–7177 (2008).
[31] Kan Zhang, Wanjung Kim, Ming Ma, Xinjian Shi, Jong Hyeok Park, “Tuning the charge transfer route by p–n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution,” J. Mater. Chem. A. 3, pp.4803-4810 (2015).
[32] Xiaxi Yao, Tianyu Liu, Xiaoheng Liu, Lude Lu, “Loading of CdS nanoparticles on the (101) surface of elongated TiO2 nanocrystals for efficient visible-light photocatalytic hydrogen evolution from water splitting,” Chemical Engineering Journal, 255, pp.28–39 (2014).
[33] Alex B. F. Martinson, James E. McGarrah, Mohammed O. K. Parpia, Joseph T. Hupp, “Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 8, pp.4655–4659 (2006).
[34] Julio Villanueva-Cab, Hongxia Wang, Gerko Oskam, and Laurence M. Peter, “Electron diffusion and back reaction in dye-sensitized solar cells: the effect of nonlinear recombination kinetics,” J. Phys. Chem. Lett. 1, pp.748–751 (2010).
[35] Juan Bisquert, Ivan Morá-Seró, “Simulation of steady-state characteristics of dye- sensitized solar cells and the interpretation of the diffusion length,” J. Phys. Chem. Lett. 1, pp.450–456 (2010).
[36] Jih-Jen Wu, Guan-Ren Chen, Hung-Hsien Yang, Chen-Hao Ku, Jr-Yuan Lai, “Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye- sensitized solar cells,” Applied Physics Letters. 90, 213109 (2007).
[37] Priti Tiwana, Pablo Docampo, Michael B. Johnston, Henry J. Snaith, Laura M. Herz, “Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells,” ACS Nano. 5 (6), pp.5158–5166 (2011).
[38] T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, “Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO,” Applied Physics Letters. 82, pp.532-534 (2003).
[39] Yongquan Qu, Xiangfeng Duan, “One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion,” J. Mater. Chem. 22, pp.16171-16181 (2012).
[40] Yue Wu, Cyrus Wadia, Wanli Ma, Bryce Sadtler, A. Paul Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8 (8), pp.2551-2555 (2008).
[41] VG Bhidet, Saji Salkalachent, A C Rastogit, C N R Raot. and MS Hegdet, “Depth profile composition studies of thin film CdS: Cu,S solar cells using XPS and AES,” J .Phys. D: AppI. Phys. 14, pp.1647-1656 (1981).
[42] Andrew Barnabas Wong, Sarah Brittman, Yi Yu, Neil P. Dasgupta, Peidong Yang,”Core–shell CdS–Cu2S nanorod array solar cells,” Nano Lett. 15 (6), pp.4096–4101 (2015).
[43] Chih-Shan Tan, Ching-Hung Hsiao, Shau-Chieh Wang, Pei-Hsuan Liu, Ming-Yen Lu, Michael H. Huang, Hao Ouyang, Lih-Juann Chen, “Sequential cation exchange generated superlattice nanowires forming multiple pn heterojunctions,” ACS Nano. 8, pp.9422–9426 (2014).
[44] Lih-Juann Chen,“Nanoscale copper and copper compounds for advanced device applications,” Metallurgical and Materials Transactions A, vol. pp.1-7 (2016)
[45] Xudong Wang, Christopher J. Summers, and Zhong Lin Wang, “Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,” Nano Lett. 4 (3), pp.423-426 (2004).
[46] Heng-Wen Ting, Yu-Kai Lin, Yi-Jen Wu, Li-Jen Chou, Cho-Jen Tsai, Lih-Juann Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C. 1, pp.3593-3599 (2013).
[47] Soumitra Kar, Subhadra Chaudhuri, “Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process,” J. Phys. Chem. B 110, pp.4542-4547 (2006).