簡易檢索 / 詳目顯示

研究生: 賴俊延
Jun-Yan Lai
論文名稱: 垂直纖維方向裂縫的微觀尺度應力強度因子
指導教授: 蔣長榮
Chun-Ron Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 74
中文關鍵詞: 應力強度因子裂縫正交性複合材料纖維
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 應力強度因子(Stress Intensity Factor)K為一評估材料強度的重要指標,本文根據複合材料力學及線性破裂力學的原理,撰寫成程式計算出模型的邊界條件,並利用『ANSYS』工程分析軟體進行模型建立,模擬正交性複合材料存有一垂直纖維方向的張開型(Mode-I)裂縫,假定巨觀時的應力強度因子為1,來求相對微觀尺度下裂縫前端位於兩材質不同位置處的無因次應力強度因子K,探討不同的基材與纖維材料彈性模數比、體積分率比及主要波松比(Poisson’s Ratio)等狀態下,其應力強度因子是如何受到非均質材料之影響。
    由文中結果可知,不論纖維體積分率為何,當裂縫端位於基材處
    的K值皆比位於纖維處來的小,且隨著彈性模數比值增加,其差值也愈大。並清楚觀察到彈性模數比值的改變,對於裂縫端處於基材處各位置分析點K值影響較小,而對於主要承受外力的纖維處則是影響較大。


    Stress Intensity Factor (SIF) is a vital target of material intensity in evaluating. This work is in terms of the principle of composite material mechanics and linear fracture mechanics, writing the program to calculate the boundary conditions of the model and simulating there is a Mode-I crack in vertical fiber direction of the orthotropic composite material, which is utilizing ANSYS engineering analysis software to build the model. We suppose the stress intensity factor is 1 under macroscopic scale, and get dimensionless stress intensity factor in the crack tip in two different positions of two materials under relative microscopic scale. We discuss how the stress intensity factor is affected by Nonhomogeneous material under the diverse matrixes and fiber materials, such as elastic modulus ration、volume fraction ratio and Poisson’s ratio.
    From the result of this work, we will know no matter the volume fraction, SIFs is smaller than one in fiber when crack tip is in the matrix. When elastic modulus ration raises, the difference increases, too. We observe clearly the change of elastic modulus ration affects slightly SIFs of crack tip in different analytic point of matrix, and concerns strongly in the fiber which is under major external force.

    摘 要 ------------------------------------------------ Ⅰ Abstract --------------------------------------------- Ⅱ 誌 謝 ------------------------------------------------ Ⅲ 目 錄 ------------------------------------------------ Ⅳ 圖表目錄 --------------------------------------------- Ⅵ 第一章 緒論 ------------------------------------------ 1 1.1 前言 ------------------------------------------- 1 1.2 研究動機與目的 --------------------------------- 3 1.3 文獻回顧 --------------------------------------- 4 1.4 本文架構 --------------------------------------- 6 第二章 基本理論 -------------------------------------- 7 2.1 單層板之材料等效模數 --------------------------- 7 2.2 單層板之應力–應變關係 ------------------------- 8 2.3 異向性彈性理論 --------------------------------- 11 2.4 應力強度因子 ----------------------------------- 14 2.5 正交性材料的破裂力學 --------------------------- 16 2.6 正交性無窮大平板含一橢圓裂縫之應力場 ----------- 19 第三章 有限元素法基本觀念 ---------------------------- 23 3.1 等參數單元之說明 ------------------------------- 23 3.2 有限元素法理論推導 ----------------------------- 25 3.3 ANSYS分析模式簡介 ------------------------------ 28 第四章 模型建立與應力強度因子分析 -------------------- 30 4.1 問題描述 --------------------------------------- 30 4.2 模型的建立 ------------------------------------- 31 4.3 模型的分析 ------------------------------------- 32 4.4 驗證所建模型合理性 ----------------------------- 34 第五章 結果與討論 ------------------------------------ 36 第六章 結論及展望 ------------------------------------ 40 參考文獻 --------------------------------------------- 72

    [1] G. M. Boyd,“Fracture Design Practices For Ship
    Structures, ”in H. Liebowitz (ed.), Fracture-An
    Advanced Treatise, Vol. V, Fracture Design of
    Structures, pp. 383-470, Academic Press, New York and
    London, 1969.

    [2] R. F. Gibson, Principles of Composite Material
    Mechanics, New York: McGraw- Hill, 1994.

    [3] R. A. Naik and W. S. Johnson, Observations of Fatigue,
    “Crack Initiation and Damage Growth in Notched Titanium
    Matrix Composites,“ Composite Materials: Fatigue and
    Fracture (Third Volume), STP 1110, T. K. O’Brien, Ed.,
    ASTM, p753-771, 1991.

    [4] C. C. Poe, Jr.,“Simulated Impact Damage in a Thick
    Graphite /Epoxy Laminate Using spherical Indenters, ”
    Proc. American society for Composites, Technomic
    Publishing, p334-343, Nov 1988.

    [5] 陳新郁、林政仁,“有限元素分析-理論與應用ANSYS”,高立圖
    書有限公司,2001。

    [6] David Broek著,陳文華、張士欽合譯,基本工程破裂力學,世
    界學術譯著,國立編譯館出版,1995.

    [7] 蔡秝凱,“正交性複合材料中裂縫前端的微觀尺度應力強度因
    子”,碩士論文,國立清華大學,2004。

    [8] A. A. Griffith,“The Phenomena of Rupture and Flow in
    Solid,”Philosophical Transactions of the Royal
    Society, 221A, pp. 163-198, 1920.

    [9] G. C. Sih, and H. Liebowitz,“Mathematical Theories of
    Brittle Fracture,”In H. Liebowitz, (ed.), Fracture–
    An Advanced Treatise, Vol. II, Mathematical
    Fundamentals, Academic Press, New York, pp.67-190, 1968.

    [10] M. D. Snyder, and T. A. Cruse,“Boundary-Integral
    Equation Analysis of Cracked Anisotropic Plates,”
    Internal Journal of Fracture, Vol. 11, pp. 315-328,
    1975.

    [11] M. E. Waddoups, J. R. Eisenmann, and B. E. Kaminski,
    “Macroscopic Fracture Mechanics of Advanced Composite
    Materials,”Journal of Composite Materials, Vol. 7,
    pp.446-454, 1971.

    [12] G. C. Sih, and E. P. Chen,“Fracture Analysis of
    Unidirectional Composite,”Journal of Composite
    Materials, Vol. 7, pp. 230-244, 1973.

    [13] M. Creager, and P. C. Paris,“Elastic Field Equations
    for Blunt Cracks with Reference to Stress Corrosion
    Cracking,”International Journal of Fracture, Vol. 3,
    pp. 247-252, 1967.

    [14] J. P. Benthem,“Stress in the Region of Rounded
    Corners,”International Journal of Solids and
    Structures, Vol. 23, pp. 239-252, 1987.

    [15] G. C. Sih, P. C. Paris, and G. R. Irwin,“On Cracks
    in Rectilinearly Anisotropic Bodies,”International
    Journal of Fracture Mechanics, Vol. 1, pp. 189-203,
    1965.

    [16] C. R. Chiang,“Kinked Cracks in an Anisotropic
    Material,”Engineering Fracture Mechanics, Vol. 39,
    pp. 927-930, 1991.

    [17] C. R. Chiang,“The Stress Field for a Blunt Crack in
    Anisotropic Material,”International Journal of
    Fracture, Vol. 68, R41-R46, 1994, and addendum:
    International Journal of Fracture, Vol. 70, R99, 1995.

    [18] F. Delale and F. Erdogan,“ The Problem of Internal
    and Edge Cracks in Orthotropic Strip,”Journal of
    Applied Mechanics, Vol. 44, Series E, No. 2, pp. 237-
    242, 1977.

    [19] R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts
    and Application of Finite Element Analysis, 3thed,
    John Wiley and Sons, Inc., 1989.

    [20] S. Parhizgar, L. W. Zachary, C. T. Sun,“Application
    of the Principles of Linear Fracture Mechanics to the
    Composite Materials,”International Journal of
    Fracture, Vol. 20, pp. 3-15, 1982.

    [21] C. R. Chiang,“The Elastic Stress Fields near Blunt
    Crack Tips in Orthotropic Materials,”第十六屆機械工程
    研討會論文集, pp. 366-372, 1999.

    [22] C. R. Chiang,“On Stress Concentration Factors In
    Orthotropic Materials,”Journal of the Chinese
    Institute of Engineers, Vol. 22, No.3, pp. 301-305,
    1999.

    [23] 陳精一、蔡國忠,“電腦輔助工程分析ANSYS 使用指南”,全
    華科技圖書股份有限公司,2000。

    [24] C. R. Chiang,“On The Stress Intensity Factors of
    Cracks Near an Interface Between Two Media,”
    International Journal of Fracture, Vol. 47, R55-R58,
    1991.

    [25] 陳俊達,“正交疊層板[ ]層橫向裂縫的微觀應力分析”,碩士
    論文,國立清華大學,2003。

    [26] S. W. Tsai, and N. J. Pagano, “Invariant Properties
    of Composite Materials,”In S. W. Tsai, J. C. Halpin,
    and N. J. Pagano, (eds.), Composite Materials
    Workshop, Stamfort, Connecticut, US, Technomic
    Publishing Co., pp. 233–253, 1968.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE