研究生: |
賴俊延 Jun-Yan Lai |
---|---|
論文名稱: |
垂直纖維方向裂縫的微觀尺度應力強度因子 |
指導教授: |
蔣長榮
Chun-Ron Chiang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 應力強度因子 、裂縫 、正交性 、複合材料 、纖維 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應力強度因子(Stress Intensity Factor)K為一評估材料強度的重要指標,本文根據複合材料力學及線性破裂力學的原理,撰寫成程式計算出模型的邊界條件,並利用『ANSYS』工程分析軟體進行模型建立,模擬正交性複合材料存有一垂直纖維方向的張開型(Mode-I)裂縫,假定巨觀時的應力強度因子為1,來求相對微觀尺度下裂縫前端位於兩材質不同位置處的無因次應力強度因子K,探討不同的基材與纖維材料彈性模數比、體積分率比及主要波松比(Poisson’s Ratio)等狀態下,其應力強度因子是如何受到非均質材料之影響。
由文中結果可知,不論纖維體積分率為何,當裂縫端位於基材處
的K值皆比位於纖維處來的小,且隨著彈性模數比值增加,其差值也愈大。並清楚觀察到彈性模數比值的改變,對於裂縫端處於基材處各位置分析點K值影響較小,而對於主要承受外力的纖維處則是影響較大。
Stress Intensity Factor (SIF) is a vital target of material intensity in evaluating. This work is in terms of the principle of composite material mechanics and linear fracture mechanics, writing the program to calculate the boundary conditions of the model and simulating there is a Mode-I crack in vertical fiber direction of the orthotropic composite material, which is utilizing ANSYS engineering analysis software to build the model. We suppose the stress intensity factor is 1 under macroscopic scale, and get dimensionless stress intensity factor in the crack tip in two different positions of two materials under relative microscopic scale. We discuss how the stress intensity factor is affected by Nonhomogeneous material under the diverse matrixes and fiber materials, such as elastic modulus ration、volume fraction ratio and Poisson’s ratio.
From the result of this work, we will know no matter the volume fraction, SIFs is smaller than one in fiber when crack tip is in the matrix. When elastic modulus ration raises, the difference increases, too. We observe clearly the change of elastic modulus ration affects slightly SIFs of crack tip in different analytic point of matrix, and concerns strongly in the fiber which is under major external force.
[1] G. M. Boyd,“Fracture Design Practices For Ship
Structures, ”in H. Liebowitz (ed.), Fracture-An
Advanced Treatise, Vol. V, Fracture Design of
Structures, pp. 383-470, Academic Press, New York and
London, 1969.
[2] R. F. Gibson, Principles of Composite Material
Mechanics, New York: McGraw- Hill, 1994.
[3] R. A. Naik and W. S. Johnson, Observations of Fatigue,
“Crack Initiation and Damage Growth in Notched Titanium
Matrix Composites,“ Composite Materials: Fatigue and
Fracture (Third Volume), STP 1110, T. K. O’Brien, Ed.,
ASTM, p753-771, 1991.
[4] C. C. Poe, Jr.,“Simulated Impact Damage in a Thick
Graphite /Epoxy Laminate Using spherical Indenters, ”
Proc. American society for Composites, Technomic
Publishing, p334-343, Nov 1988.
[5] 陳新郁、林政仁,“有限元素分析-理論與應用ANSYS”,高立圖
書有限公司,2001。
[6] David Broek著,陳文華、張士欽合譯,基本工程破裂力學,世
界學術譯著,國立編譯館出版,1995.
[7] 蔡秝凱,“正交性複合材料中裂縫前端的微觀尺度應力強度因
子”,碩士論文,國立清華大學,2004。
[8] A. A. Griffith,“The Phenomena of Rupture and Flow in
Solid,”Philosophical Transactions of the Royal
Society, 221A, pp. 163-198, 1920.
[9] G. C. Sih, and H. Liebowitz,“Mathematical Theories of
Brittle Fracture,”In H. Liebowitz, (ed.), Fracture–
An Advanced Treatise, Vol. II, Mathematical
Fundamentals, Academic Press, New York, pp.67-190, 1968.
[10] M. D. Snyder, and T. A. Cruse,“Boundary-Integral
Equation Analysis of Cracked Anisotropic Plates,”
Internal Journal of Fracture, Vol. 11, pp. 315-328,
1975.
[11] M. E. Waddoups, J. R. Eisenmann, and B. E. Kaminski,
“Macroscopic Fracture Mechanics of Advanced Composite
Materials,”Journal of Composite Materials, Vol. 7,
pp.446-454, 1971.
[12] G. C. Sih, and E. P. Chen,“Fracture Analysis of
Unidirectional Composite,”Journal of Composite
Materials, Vol. 7, pp. 230-244, 1973.
[13] M. Creager, and P. C. Paris,“Elastic Field Equations
for Blunt Cracks with Reference to Stress Corrosion
Cracking,”International Journal of Fracture, Vol. 3,
pp. 247-252, 1967.
[14] J. P. Benthem,“Stress in the Region of Rounded
Corners,”International Journal of Solids and
Structures, Vol. 23, pp. 239-252, 1987.
[15] G. C. Sih, P. C. Paris, and G. R. Irwin,“On Cracks
in Rectilinearly Anisotropic Bodies,”International
Journal of Fracture Mechanics, Vol. 1, pp. 189-203,
1965.
[16] C. R. Chiang,“Kinked Cracks in an Anisotropic
Material,”Engineering Fracture Mechanics, Vol. 39,
pp. 927-930, 1991.
[17] C. R. Chiang,“The Stress Field for a Blunt Crack in
Anisotropic Material,”International Journal of
Fracture, Vol. 68, R41-R46, 1994, and addendum:
International Journal of Fracture, Vol. 70, R99, 1995.
[18] F. Delale and F. Erdogan,“ The Problem of Internal
and Edge Cracks in Orthotropic Strip,”Journal of
Applied Mechanics, Vol. 44, Series E, No. 2, pp. 237-
242, 1977.
[19] R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts
and Application of Finite Element Analysis, 3thed,
John Wiley and Sons, Inc., 1989.
[20] S. Parhizgar, L. W. Zachary, C. T. Sun,“Application
of the Principles of Linear Fracture Mechanics to the
Composite Materials,”International Journal of
Fracture, Vol. 20, pp. 3-15, 1982.
[21] C. R. Chiang,“The Elastic Stress Fields near Blunt
Crack Tips in Orthotropic Materials,”第十六屆機械工程
研討會論文集, pp. 366-372, 1999.
[22] C. R. Chiang,“On Stress Concentration Factors In
Orthotropic Materials,”Journal of the Chinese
Institute of Engineers, Vol. 22, No.3, pp. 301-305,
1999.
[23] 陳精一、蔡國忠,“電腦輔助工程分析ANSYS 使用指南”,全
華科技圖書股份有限公司,2000。
[24] C. R. Chiang,“On The Stress Intensity Factors of
Cracks Near an Interface Between Two Media,”
International Journal of Fracture, Vol. 47, R55-R58,
1991.
[25] 陳俊達,“正交疊層板[ ]層橫向裂縫的微觀應力分析”,碩士
論文,國立清華大學,2003。
[26] S. W. Tsai, and N. J. Pagano, “Invariant Properties
of Composite Materials,”In S. W. Tsai, J. C. Halpin,
and N. J. Pagano, (eds.), Composite Materials
Workshop, Stamfort, Connecticut, US, Technomic
Publishing Co., pp. 233–253, 1968.