簡易檢索 / 詳目顯示

研究生: 汪維萱
Wang, Wei-Hsuan.
論文名稱: 微波製造之可生物分解高分子膜及其土壤降解探討
Microwave-Assisted Fabrication of Biodegradable Polymer Films and their Compost Degradation
指導教授: 王潔
Wang, Jane
口試委員: 汪上曉
Wong, David Shan-Hill
劉大佼
Liu, Ta-Jo
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 80
中文關鍵詞: 可生物降解聚合物微波輔助製造甘油堆肥降解
外文關鍵詞: Biodegradable polymer, Glycerol, Microwave-assisted fabrication, Compost degradation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年環保意識興起使得塑膠汙染逐漸受到重視;同時,伴隨著生質柴油產量逐年增加,導致其副產物粗甘油於市場上供過於求,為了有效地利用粗甘油並減緩塑料污染,一種以甘油為基礎且可生物降解的聚合物,PGM,因應而生。在本研究中,五種甘油 (包括由Sigma-Aldrich提供的純甘油以及承德油脂公司提供的四種粗甘油),首先利用HPLC依照甘油純度區分,同時發現可藉由甘油之 pH 與純度間高度相關之線性關係,可利用 pH 計做快速的純度分析。藉由 FTIR和ICP-MS分析可推斷粗甘油中的酸性雜質來源是硫酸、磷酸及其衍生物。拉伸試驗的結果表明,PGM和PGM(I)膜(由粗甘油和馬來酸合成)之間的機械性能是可相比的。為了加速預聚合物之製程,本研究藉由引進微波系統,將原本由油浴合成所需反應時間減少至少 30 倍且同時提高批次反應之的預聚物分子量之一致性。另外,本研究成功製造出與以往 PGM膜(200至220 μm)具有相當機械性質且更薄厚度(60至80 μm)之PGM膜,且熱固化時間減少25% 所需塗佈溶液可減少60%。微波系統同時也應用於膜的熱交聯製程,微波實驗結果顯示,添加酸性固體催化劑且使用較高的微波功率,有利於縮短固化時間;而降低輸送帶之速率以及增加輸送帶往返次數,可以提高膜之楊氏模數和拉伸強度。在本實驗中,PGM之土壤降解性可更準確地評估藉由翻新以往的土壤降解系統,且此系統之有效性藉由測試纖維素樣品且30天內達到70%以上的生物降解,證實了堆肥系統的有效性;在 48 天的堆肥試驗結果顯示,即使大部分PGM在土壤中無法以肉眼觀察到,從 PGM生物反應器所產生的二氧化碳比對控制組產生的二氧化碳少,以此推測 PGM 在試驗開始時,主要的降解機制為水解而不是生物降解,而水解將酸釋放到土壤中並影響微生物的活性,未來研究方向將朝向於改良材料以降低 PGM 的降解速率。另外,透氧性試驗的結果表明,PGM膜顯示出良好的氧氣阻隔性並且可以用作氧氣阻隔膜。


    Plastic pollution has become a serious environmental challenge in the past decades because of the ubiquitous use all over the world. At the same time, accompanied by the rapid growth of the biodiesel industry and the oversupply of crude glycerol, the price of crude glycerol, which is the main byproduct of biodiesel production, drops sharply. To utilize crude glycerol effectively and alleviate the plastic pollution, a novel and glycerol-based biodegradable polymer is developed, Poly (glycerol maleate)( PGM).
    In the present work, glycerol samples, including pure glycerol provided by Sigma-Aldrich and the four crude glycerol provided by Chant Oil company, are first classified into different purity levels by HPLC. It is founded that for simple quick analysis analyses of purity, pH meter can be utilized for the strong correlation between glycerol purity level and pH value. The analysis analyses of FTIR and ICP-MS indicate that the acidic impurities sources in the crude glycerol might be sulfuric acid, phosphoric acid and their derivatives. The results of the tensile test are shown that the mechanical properties among PGM and PGM(I) films (pre-polymer synthesized from crude glycerol and maleic acid) are comparable. Moreover, the a microwave system was introduced to accelerate the prepolymerization of PGM, which reduces the by decreasing reaction time by at least by 30-folds. Furthermore, microwave-assisted synthesis also enables the improvement of the consistency of molecular weight of PGM pre-polymer between batches. Additionally, with the decreasing decrease of the curing time by 25% and a a 60% reduction in the coating solution required by 60%, PGM films withthat are the thinner60 to 80 μm thick thickness(60 to 80 μm) were fabricated. The mechanical properties of the thin films are comparable to the PGM films that are 200 to 220 μm thick. Further, the microwave is also introduced toin the curing process, and the results shows that the acidic solid catalyst and the higher microwave power facilitate the curing time. The slower speed of conveyor belt and the more number of laps can enhance the Young’s modulus and ultimate tensile strength of the films. Besides, a the compost degradation system is set upimproved for to more accurate evaluate evaluation of the degradability of PGM. The validity of the compost system is confirmed by cellulose samples achieving over 70% biodegradation within 30 days. The composting test demonstrates that the less carbon dioxide evolved from PGM groups than the control group (soil without polymer films) even though the bulk of PGM disappears. It is believed that PGM degrades by hydrolysis rather than by biodegradation in the beginning of the composting test. The hydrolysis may release acid to soil and affect the activity of microbials. Further study will focus on modifying materials to alleviate the rate of degradation of PGM. In addition, the results of the oxygen permeability test are revealed that PGM films demonstrate an extraordinary oxygen barrier property and can be applied as oxygen barrier films.

    Abstract i 摘要 iii 謝誌 iv Table of Contents 1 List of Figures 3 List of Tables 5 1 Research Background 6 1.1 Plastic Pollution and Global Trend 6 1.1.1 Global Regulation of Plastic Bags 7 1.1.2 Global Demand for Biodegradable Plastics 8 1.2 Biodegradation in Compost 10 1.2.1 Introduction to Composting 10 1.2.2 Introduction to Compostable Plastic 12 1.3 Production Growth and Utilization of Crude Glycerol 14 1.4 Gas Permeability of Polymer Films 17 1.5 Microwave-Assisted Polymer Synthesis 19 1.6 Introduction to Poly (glycerol maleate) (PGM) 22 1.7 Motivation and Goal 24 2 Materials and Experimental Methods 25 2.1 Research Framework 25 2.2 Chemicals and Instruments 26 2.3 Experimental Procedure 28 2.3.1 Classification of Glycerol 28 2.3.2 Synthesis of PGM 29 2.3.3 Preparation of PGM Composites (PGM with Graphene Oxide, PGM-GO) 29 2.3.4 Fabrication of PGM Films 30 2.4 Characterization of PGM 32 2.4.1 Molecular Weight Analysis of PGM Pre-Polymer 32 2.4.2 Rheological Analysis of PGM Pre-Polymer Solution 33 2.5 Compost Degradation System 35 2.5.1 Compost System Setting and Calculation of Percent of Biodegradation 35 2.5.2 pH Measurement 39 2.5.3 Total Organic Carbon Analysis 40 3 Results and Discussions 41 3.1 Classification of Glycerol 41 3.1.1 Physical Properties of Crude Glycerol 41 3.1.2 Glycerol Content Analysis Using HPLC and pH Meter 42 3.1.3 Impurities Analysis Using FTIR 45 3.1.4 Impurities Analysis Using ICP-MS 46 3.1.5 The Effect of Glycerol Purity on Mechanical Properties of PGM Films 46 3.2 Comparison PGM Pre-Polymer Synthesis Methods between Oil Bath and Microwave 48 3.2.1 The Effect of Pre-Polymer Synthesis Methods on Molecular Weight of Pre-polymer 49 3.2.2 The Effect of Pre-Polymer Synthesis Methods on Viscosity of Pre-Polymer Solution 50 3.2.3 The Effect of Synthesis Methods on Mechanical Properties of PGM Films 52 3.3 Thin Film Fabrication 53 3.4 Fabrication of Films via Microwave-assisted Thermal Curing 55 3.4.1 The Effect of Microwave Power on PGM Films Curing Process 55 3.4.2 The Effect of the Catalyst on PGM Films Curing Process 56 3.4.3 The Effect of the Conveyor Belt Speed and Number of Laps on Mechanical Properties of PGM Films 57 3.5 Compost Degradation 59 3.5.1 Modification of Compost Degradation Process 59 3.5.2 Validity of Compost System 63 3.6 Characterization of PGM Composites Films 70 3.6.1 Dispersion of GO in PGM Films 70 3.6.2 Mechanical Properties of PGM-GO Films 72 3.6.3 Oxygen Barrier Property of PGM and PGM-GO Films 72 4 Conclusion 74 Reference 76

    1. Geyer, R.; Jambeck, J. R.; Law, K. L., Production, use, and fate of all plastics ever made. Science Advances 2017, 3 (7).
    2. Hannah Ritchie, M. R. Plastic Pollution. https://ourworldindata.org/plastic-pollution.
    3. SINGLE-USE PLASTICS: A Roadmap for Sustainability; 2018.
    4. McCarthy, N. The Countries Banning Plastic Bags. https://www.statista.com/chart/14120/the-countries-banning-plastic-bags/.
    5. Global efforts to end plastic pollution: single-use plastics. https://www.earthday.org/plasticban/.
    6. Spierling, S.; Röttger, C.; Venkatachalam, V.; Mudersbach, M.; Herrmann, C.; Endres, H.-J., Bio-based Plastics - A Building Block for the Circular Economy? Procedia CIRP 2018, 69, 573-578.
    7. Rostkowski, K. H.; Criddle, C. S.; Lepech, M. D., Cradle-to-Gate Life Cycle Assessment for a Cradle-to-Cradle Cycle: Biogas-to-Bioplastic (and Back). Environmental Science & Technology 2012, 46 (18), 9822-9829.
    8. Bernal, M. P.; Alburquerque, J. A.; Moral, R., Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology 2009, 100 (22), 5444-5453.
    9. Zafar, S. An Introduction to Composting. https://www.bioenergyconsult.com/composting/.
    10. David M. Crohn Impact of Compost Application On Soil Erosion and Water Quality; University of California: 2011.
    11. Composting At Home. https://www.epa.gov/recycle/composting-home.
    12. Singh, C. K.; Kumar, A.; Roy, S. S., Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports 2018, 8 (1), 2913.
    13. National Overview: Facts and Figures on Materials, Wastes and Recycling. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials#R&Ctrends.
    14. ASTM, ASTM D6400-04 Standard Specification for Compostable Plastics. 2004.
    15. BIOPLASTICS; Fachagentur Nachwachsende Rohstoffe e. V. (FNR), 2014.
    16. Kale, G.; Auras, R.; Singh, S. P.; Narayan, R., Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer Testing 2007, 26 (8), 1049-1061.
    17. Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S. E.; Singh, S. P., Compostability of Bioplastic Packaging Materials: An Overview. Macromolecular Bioscience 2007, 7 (3), 255-277.
    18. Muniyasamy, S.; Reddy, M. M.; Misra, M.; Mohanty, A., Biodegradable green composites from bioethanol co-product and poly(butylene adipate-co-terephthalate). Industrial Crops and Products 2013, 43, 812-819.
    19. Tabasi, R. Y.; Ajji, A., Selective degradation of biodegradable blends in simulated laboratory composting. Polymer Degradation and Stability 2015, 120, 435-442.
    20. Ayoub, M.; Abdullah, A. Z., Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews 2012, 16 (5), 2671-2686.
    21. Nomanbhay, S.; Hussein, R.; Ong, M. Y., Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: a review. Green Chemistry Letters and Reviews 2018, 11 (2), 135-157.
    22. Valerio, O.; Horvath, T.; Pond, C.; Manjusri, M.; Mohanty, A., Improved utilization of crude glycerol from biodiesel industries: Synthesis and characterization of sustainable biobased polyesters. Industrial Crops and Products 2015, 78, 141-147.
    23. Joe C. Thompson, B. B. H. In Characterization of Crude Glycerol from Biodiesel Production from Multiple Feedstocks, 2006.
    24. Ashby, R. D., Solaiman, D.K.Y. & Foglia, T.A. , Bacterial Poly(hydroxyalkanoate) Polymer Production from the Biodiesel Co-product Stream. Journal of Polymers and the Environment 2004, 12.
    25. Mu, Y., Teng, H., Zhang, DJ. et al., Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 2006, 28.
    26. Yang, F.; Hanna, M. A.; Sun, R., Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnology for Biofuels 2012, 5 (1), 13.
    27. Soltani, I.; Spontak, R. J., 1 - Nanotechnological strategies yielding high-barrier plastic food packaging. In Food Packaging, Grumezescu, A. M., Ed. Academic Press: 2017; pp 1-43.
    28. Huang, H. D.; Ren, P. G.; Xu, J. Z.; Xu, L.; Zhong, G. J.; Hsiao, B. S.; Li, Z. M., Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. J. Membr. Sci. 2014, 464, 110-118.
    29. Sinha Ray, S.; Bousmina, M., Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science 2005, 50 (8), 962-1079.
    30. Pinto, A. M.; Cabral, J.; Tanaka, D. A. P.; Mendes, A. M.; Magalhães, F. D., Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polymer International 2013, 62 (1), 33-40.
    31. Ortenzi, M. A.; Basilissi, L.; Farina, H.; Di Silvestro, G.; Piergiovanni, L.; Mascheroni, E., Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of l-lactide with silane-modified nanosilica and montmorillonite. European Polymer Journal 2015, 66, 478-491.
    32. Cui, Y.; Kumar, S.; Rao Kona, B.; van Houcke, D., Gas barrier properties of polymer/clay nanocomposites. RSC Advances 2015, 5 (78), 63669-63690.
    33. Deshmukh, K.; Ahamed, M. B.; Pasha, S. K. K.; Deshmukh, R. R.; Bhagat, P. R., Highly dispersible graphene oxide reinforced polypyrrole/polyvinyl alcohol blend nanocomposites with high dielectric constant and low dielectric loss. RSC Advances 2015, 5 (76), 61933-61945.
    34. Aydin, H. M.; Salimi, K.; Rzayev, Z. M. O.; Pişkin, E., Microwave-assisted rapid synthesis of poly(glycerol-sebacate) elastomers. Biomaterials Science 2013, 1 (5), 503-509.
    35. Nakamura, T.; Nagahata, R.; Kunii, K.; Soga, H.; Sugimoto, S.; Takeuchi, K., Large-Scale Polycondensation of Lactic Acid Using Microwave Batch Reactors. Organic Process Research & Development 2010, 14 (4), 781-786.
    36. Leadbeater, N. E., Microwave-Assisted Synthesis: General Concepts. In Microwave-assisted Polymer Synthesis, Hoogenboom, R.; Schubert, U. S.; Wiesbrock, F., Eds. Springer International Publishing: Cham, 2016; pp 1-44.
    37. Bálint E., K. G., The Spread of the Application of the Microwave Technique in Organic Synthesis. In Keglevich G. (eds) Milestones in Microwave Chemistry. , Springer, Cham: SpringerBriefs in Molecular Science, 2016.
    38. Kempe, K.; Becer, C. R.; Schubert, U. S., Microwave-Assisted Polymerizations: Recent Status and Future Perspectives. Macromolecules 2011, 44 (15), 5825-5842.
    39. Komorowska-Durka, M.; Dimitrakis, G.; Bogdał, D.; Stankiewicz, A. I.; Stefanidis, G. D., A concise review on microwave-assisted polycondensation reactions and curing of polycondensation polymers with focus on the effect of process conditions. Chemical Engineering Journal 2015, 264, 633-644.
    40. Wiesbrock, F.; Hoogenboom, R.; Schubert, U. S., Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives. Macromolecular Rapid Communications 2004, 25 (20), 1739-1764.
    41. Rodríguez, A. M.; Prieto, P.; de la Hoz, A.; Díaz-Ortiz, Á.; Martín, D. R.; García, J. I., Influence of Polarity and Activation Energy in Microwave–Assisted Organic Synthesis (MAOS). ChemistryOpen 2015, 4 (3), 308-317.
    42. Mansourpanah, Y.; Madaeni, S. S.; Rahimpour, A.; Farhadian, A., The effect of non-contact heating (microwave irradiation) and contact heating (annealing process) on properties and performance of polyethersulfone nanofiltration membranes. Applied Surface Science 2009, 255 (20), 8395-8402.
    43. Yu, V. B.; Rybakov, K. I.; Semenov, V. E., High-temperature microwave processing of materials. Journal of Physics D: Applied Physics 2001, 34 (13), R55.
    44. Rai, R.; Tallawi, M.; Grigore, A.; Boccaccini, A., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. 2012; Vol. 37, p 1051-1078.
    45. Hou, M.-L.; Lu, C.-M.; Lin, C.-H.; Lin, L.-C.; Tsai, T.-H., Pharmacokinetics of Maleic Acid as a Food Adulterant Determined by Microdialysis in Rat Blood and Kidney Cortex. Molecules 2016, 21 (3).
    46. Chieh-Wei Huang, J. W. Synthesis and Characterization of Biodegradable Polymer Composite Films and Discussion of Polymer Degradation in Waters. National Tsing Hua University, 2018.
    47. Hsin-Han Chen, J. W. Synthesis and Fabrication of Glycerol-Based Polymeric Biodegradable Films via Slot-Die. National Tsing Hua University 2017.
    48. Chang, Y.-R.; Chang, H.-M.; Lin, C.-F.; Liu, T.-J.; Wu, P.-Y., Three minimum wet thickness regions of slot die coating. Journal of Colloid and Interface Science 2007, 308 (1), 222-230.
    49. Barlow, C. Y.; Morgan, D. C., Polymer film packaging for food: An environmental assessment. Resources, Conservation and Recycling 2013, 78, 74-80.
    50. Zhao, P.; Liu, C.; Qu, W.; He, Z.; Gao, J.; Jia, L.; Ji, S.; Ruan, R., Effect of Temperature and Microwave Power Levels on Microwave Drying Kinetics of Zhaotong Lignite. 2019; Vol. 7, p 74.
    51. ASTM, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, Incorporating Thermophilic Temperatures. In ASTM D5338 - 15, ASTM International: 2015.
    52. Dřímal, P.; Hoffmann, J.; Družbík, M., Evaluating the aerobic biodegradability of plastics in soil environments through GC and IR analysis of gaseous phase. Polymer Testing 2007, 26 (6), 729-741.
    53. Niaounakis, M., Chapter 2 - Properties. In Biopolymers: Processing and Products, Niaounakis, M., Ed. William Andrew Publishing: Oxford, 2015; pp 79-116.
    54. Wilfred, O.; Tai, H.; Marriott, R.; Liu, Q.; Tverezovskiy, V.; Curling, S.; Tai, H.; Fan, Z.; Wang, W., Biodegradation of Polylactic Acid and Starch Composites in Compost and Soil. 2018, Vol.1, 2(01-11).
    55. Zumstein, M. T.; Schintlmeister, A.; Nelson, T. F.; Baumgartner, R.; Woebken, D.; Wagner, M.; Kohler, H.-P. E.; McNeill, K.; Sander, M., Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Science Advances 2018, 4 (7), eaas9024.
    56. Rousk, J.; Bååth, E.; Brookes, P. C.; Lauber, C. L.; Lozupone, C.; Caporaso, J. G.; Knight, R.; Fierer, N., Soil bacterial and fungal communities across a pH gradient in an arable soil. The Isme Journal 2010, 4, 1340.
    57. Health, T. N. I. o. M. MALEIC ACID. https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@DOCNO+666.
    58. Rai, R.; Tallawi, M.; Grigore, A.; Boccaccini, A. R., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science 2012, 37 (8), 1051-1078.
    59. Warton, B.; Matthiessen, J. N., The crucial role of calcium interacting with soil pH in enhanced biodegradation of metam-sodium. Pest Management Science 2005, 61 (9), 856-862.
    60. Arias, V.; Höglund, A.; Odelius, K.; Albertsson, A.-C., Tuning the degradation profiles of poly(L-lactide)-based materials through miscibility. Biomacromolecules 2014, 15 (1), 391-402.
    61. Mokwena, K. K.; Tang, J., Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods. Critical Reviews in Food Science and Nutrition 2012, 52 (7), 640-650.
    62. Lange, J.; Wyser, Y., Recent innovations in barrier technologies for plastic packaging—a review. Packaging Technology and Science 2003, 16 (4), 149-158.

    QR CODE