簡易檢索 / 詳目顯示

研究生: 陳柔妤
論文名稱: 管制圖的製程失效機制及抽樣間隔之探討
指導教授: 桑慧敏
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 59
中文關鍵詞: 變動抽樣區間統計經濟設計管制圖GG3分配反應曲面
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    近年來產品品質改善在工業界中已經變成重要的一環。當然,提昇產品品質與良率的方法有很多,其中製程管制則廣為業界所使用。在製程管制中通常是利用管制圖來進行監視,建立管制圖要先決定三個重要的參數,即抽樣樣本大小(n)、抽樣間隔(h)和管制界限(K)。管理者究竟要如何建立才能達到降低管制成本且有效的監控整體製程?
    在本研究中為建立一變動抽樣區間之 統計經濟設計管制圖模型,其中製程失效機制分配為 分配。統計經濟管制圖設計一方面可使每小時期望淨收入最大化,(也就是將製程每小時期望損失最小),另一方面也可將製程異常判斷錯誤的機率限定在一個容忍的範圍內,若製程真正發生偏移時,能盡快找出異常點。本研究利用非線性規劃的反應曲面搜尋演算法來進行模型參數求解,並透過個案研究來加以分析與探討。
    本論文的主要研究貢獻有下列兩點。第一、所建立的模型可運用在不同分配下的機器失效情況。決策者不需要費時間另建不同分配的模型。第二、若一作業環境中有多台機器設備時,可以利用該模型來同時進行分析與探討,對製程更能清楚掌握。
    本論文的主要結果與發現為:( 1 ) 採用不同的製程失效分配, 分配的統計經濟管制圖的期望損失E(L)似乎較小;( 2 ) 經由兩個個案研究發現期望損失E(L)值與製程失效圖有關係存在。


    目 錄 致 謝 i 中文摘要 ii 目 錄 iii 表 目 錄 v 圖 目 錄 vi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究範圍與假設 3 1.3 研究方法與步驟 4 1.4 研究流程與架構 6 第二章 文獻回顧與探討 7 2.1 製程管制之相關文獻 7 2.1.1 工程製程管制 7 2.1.2 統計製程管制 8 2.1.3 工程製程管制與統計製程管制比較 11 2.2 管制圖的介紹 12 2.3 管制圖的設計 13 2.3.1 heuristic design of control chart 14 2.3.2 統計設計管制圖 14 2.3.3 經濟設計管制圖 15 2.3.4 統計經濟設計管制圖 19 2.3.5 管制圖設計比較 20 2.4 變動抽樣方式之簡介 20 2.5 Generalized Gamma( )分配簡介 22 第三章 之統計經濟設計管制圖模型發展 26 3.1 模型假設條件 26 3.2 符號說明 26 3.3 機率之定義 27 3.4 變動抽樣區間之機率定義 28 3.5 製程週期時間之定義 29 3.6 成本項目之推導 33 第四章 模型求解發展 36 4.1 反應曲面法 36 4.1.1 反應曲面數學模式 36 4.1.2 反應曲面的搜尋過程 37 4.2 非線性規劃的搜尋方法 37 第五章 個案研究與敏感度分析 41 5.1 個案研究 41 5.1.1 個案一 41 5.1.2 個案二 44 5.2 個案研究綜合探討 45 5.3 製程與成本參數敏感度分析 47 5.3.1 敏感度分析 47 5.3.2 敏感度分析 48 第六章 結論與未來研究方向 50 6.1 研究結果與發現 50 6.2 未來研究方向 50 參考文獻 52 附錄一 公式推導 55 附錄二 5種成本與製程參數數據資料 59 表 目 錄 表1 機遇原因與可歸屬原因之區別 9 表2 EPC與SPC之特性綜合比較表 11 表3 以Duncan模型為基礎所發展的經濟管制圖相關文獻整理 17 表4 以抽樣間隔種類所發展的經濟管制圖相關文獻整理 18 表5 統計經濟設計管制圖之相關文獻 19 表6 各管制圖設計方法之比較 20 表7 各分配的P.D.F及瞬間失效率 23 表8 個案研究一:不同成本與製程參數下的模型變數解 43 表9 個案研究二:不同成本與製程參數下的模型變數解 43 表10 個案一中不同決策變數組合下的E(L)值 45 表11 分配之抽樣間隔比較表 49 表12 分配之抽樣間隔比較表 49 圖 目 錄 圖1 研究架構流程圖 6 圖2 工程製程管制流程 8 圖3 統計製程管制流程 10 圖4 管制圖之型式 13 圖5 =0.05時的O.C.曲線圖 14 圖6 Duncan經濟設計模型示意圖 16 圖7 管制圖之二區間變動抽樣間隔設計 21 圖8 分配的機率分配圖 22 圖9 與其他分配的相關圖 24 圖10 各分配的 25 圖11 非線性規劃反應曲面之演算流程 40 圖12 個案研究一中兩種製程分配之p.d.f 42 圖13 個案研究一中兩種製程分配的h(t) 42 圖14 個案研究二中三種製程分配之p.d.f 44 圖15 個案研究二中三種製程分配的h(t) 44 圖16 個案一與個案二中製程分配的h(t)圖(t從0到10) 46 圖17 個案一與個案二中製程分配的h(t)圖(t從0到200) 47 圖18 個案一中 值改變對各變數的敏感度分析圖 48 圖19 個案一中 值改變對各變數的敏感度分析圖 48

    參考文獻
    [1] 鄭春生, 1996, 品質管理, 三民書局, 台北市。
    [2] 朱一中, 雙變數加速衰變模型分析(LED產品之個案研究), 清華大學碩士論文, 民國85年7月。
    [3] Amin, R. W., and Miller, R. W., 1993, A Robustness Study of Charts With Variable Sampling Intervals Control, Journal of Quality Technology, 25, 36-44.
    [4] Bai, D. S., and Lee, K. T., 1998, An Economic Design of Variable Sampling Interval Control Charts, International Journal of Production Economics, 54, 57-64
    [5] Banerjee, P. K., and M. A. Rahim, 1988, Economic Design of Control Charts Under Weibull Shock Models, Technometrics, 30(4), 407-414.
    [6] Box, G. E. P., and T. Kramer, 1992, Statistical Process Monitoring and Feedback Adjustment—A Discussion, Technometrics, 34(3),251-267.
    [7] Box, G. E. P., D. E. Coleman, and R. V. Baxley, 1997, A Comparison of Statistical Process Control and Engineering Process Control, Journal of Quality Technology, 29, 128-130.
    [8] Chen, Y. S, and Yang, Y, M, 2002, An Extension of Banerjee and Rahim’s Model for Economic Design of Moving Average Control Chart for A Continuous Flow Process, European Journal of Operational Research, 143, 600-610.
    [9] Chiu, W. K., 1974, The Economic Design of Cusum Charts for Controlling Normal
    Means, Applied Statistics, 23(3), 420-433.
    [10] Chiu, W. K., 1975, Economic Design of Attribute Control Charts, Technometrics, 17, 81-87.
    [11] Chiu, W. K., 1976, Economic Design of np Charts for Processes Subject to A Multiplicity of Assignable Causes, Management Science, 23(4), 404-411.
    [12] Chung, K. J., and Lin, C. N., 1993, The Economic Design of Dynamic Control Charts Under Weibull Shock Models, International Journal of Quality and Reliability Management, 10(8), 41-56.
    [13] Costa, AFB., 1993, Joint Economic Design of and R Control Charts for Process Subject to Two Independent Assignable Causes, IIE Transactions, 25, 27-33.
    [14] Cui, R., and Reynolds, M. R., Jr., 1988, Charts With Runs Rules and Variable Sampling Intervals, Communications in Statistics:Simulation & Computation, 17, 1073-1093.
    [15] Duncan, A. J., 1956, The Economic Design of Charts Used to Maintain Current Control of A Process, Journal of the American Statistical Association, 51, 228-242.
    [16] Fletcher, R., and Reeves, C. M., 1964, Function Minimization by Conjugate Gradients, Computer Journal, 7, 149-154.
    [17] Gibra, I. N., 1971, Economically Optimal Determination of the Parameters of an Control Chart, Management Science, 17(9), 635-646.
    [18] Gibra, I. N., 1975, Recent Developments in Control Chart Techniques, Journal of Quality Technology, 7(4), 183-192.
    [19] Girshick, M. A., and Rubin, H., 1952, A Bayes’ Approach to A Quality Control Model, Annals of Mathematical Statistics, 23,114-125.
    [20] Goel, A. L., and Wu, S. M., 1973, Economically Optimum Design of Cusum Charts, Management Science, 19(11), 1271-1282.
    [21] Ho, C. C., and Case, K. E., 1994, The Economically-Based EWMA Control Chart, International Journal of Production Research, 32, 2179-2186.
    [22] Ho, C. C., and Case K., E., 1994, Economic Design of Control Chart:A Literature Review for 1981-1991, Journal of Quality Technology, 26, 39-53.
    [23] Hu, P. W., 1984, Economic Design of An Control Chart Under Nonpoisson Process Shift, Abstract, TIMS/ORSA Joint National Meeting, San Francisco, May 84, 14-16.
    [24] Hu, P. W., 1986, Economic Design of An Control Chart With Nonexponential Times Between Process Shifts, IIE News, Quality Control and Reliability Engineering, 21, 1-3.
    [25] Janakiram, M., and J. B. Keats, 1998, Combing SPC and EPC in a Hybrid Industry, Journal of Quality Technology, 30, 189-199.
    [26] Jones, L. L., and Case, K. E., 1981, Economic Design of A Joint and R Control Chart, AIIE Transactions, 13, 182-195.
    [27] Joshi, S., Sherali, H. D., and Tew, J. D., 1998, An Enhanced Response Surface Methodology (RSM) Algorithm Using Gradient Deflection and Second Order Search Strategies, Computers and Operations Research, 25, 531-542.
    [28] Kwei, T., and Jen, T., 1994, Design of Screening Procedures:A Rewiew, Journal of Quality Technology, 26(3), 209-225.
    [29] Lorenzen, T. J., and Vance, L. C., 1986, The Economic Design of Control Charts:A Unified Approach, Technometrics, 28(1),3-10.
    [30] McWilliams, T. P., 1989, Economic Control Chart Design and The In-Control Time Distribution:A Sensitivity Analysis, Journal of Quality Technology, 21, 103-110.
    [31] McWilliams, T. P., 1994, Economic, Statistical, and Economic-Statistical Chart Designs, Journal of Quality Technology, 26(3), 227-238.
    [32] Montgomery, D. C., 1980, The Economic Design of Control Charts:A Review and Literature Survey, Journal of Quality Technology, 12(2), 75-87.
    [33] Montgomery, D. C., and Friedman, D. J., 1989, Statistical Process Control in a Computer-Integrated Manufacturing Environment, Statistical Process Control in Automated Manufacturing,(J. B. Keats and N. F. Hubele, Eds.)Marcel Dekker, New York, NY, 67-87.
    [34] Montgomery, D. C., 1992, The Use of Statistical Process Control and Design of Experiments in Product and Process Improvement, IIE Transactions, 24(5), 4-17.
    [35] Montgomery, D. C., J. B. Keats, G. C. Runger, and W. S. Messina, 1994, Integrating Statistical Process Control and Engineering Process Control, Journal of Quality Technology, 26, 79-87.
    [36] Montgomery, D. C., Torng. C.-C., Cochran, J. K., and Lawrence, F. P., 1995, Statistically Constrained Economic Design of The EWMA Control Chart, Journal of Quality Technology, 27, 250-256.
    [37] Montgomery, D. C., 2001, Introduction to Statistical Quality Control, 4th ed., John Wiley & Sons, New York.
    [38] Oraini, H. A., and Rahim M. A., 2002, Economic Statistical Design of Control Charts for Systems With Gamma( ) In-Control Times, Computer and Industrial Engineering, 43, 645-654.
    [39] Panagos, M. R., Heikes R. G., and Montgomery, D. C., 1985, Economic Design of Control Charts for Two Manufacturing Process Models, Naval Research Logistics Quarterly, 32, 631-646.
    [40] Parkhideh, B, and Case, K. E., 1989, The Economic Design of a Dynamic -Control Chart, IIE Transactions, 21,313-323.
    [41] Reynolds, M. R., and Arnold, J. C., 1986, Optimal One-Sided Shewhart Control Charts With Variable Sampling Intervals between Samples, Technical Report, 86(3).
    [42] Reynolds, M. R., Jr, Amin, R. W., Arnold, J. C., and Nachlas, J. A., 1988, Charts With Variable Sampling Intervals, Technometrics, 30(2), 181-192.
    [43] Runger, G. C., and Montgomery, D. C., 1993, Adaptive Sampling Enhancements for Shewhart Control Charts, IIE Transactions, 25, 41-51.
    [44] Saniga, E. M., 1978, Joint Economical Design of and R Control Charts, Management Science, 24, 420-431.
    [45] Saniga, E. M., 1989, Economic Statistical Control Chart Designs With an Application to and R Charts, Technometrics, 31(3), 313-320.
    [46] Shao, Y. E., G. C. Runger, J. Haddock, and W. A. Wallace, 1999, Adaptive Controllers to Integrate SPC and EPC, Communications in Statistics Part B:Simulation & Computation, 28, 13-36.
    [47] Tagaras, G., 1998, A Survey of Recent Developments in the Design of Adaptive Control Charts, Journal of Quality Technology, 30(3), 212-231.
    [48] Taylor, H. M., 1968, The Economic Design of Cumulative Sum Control Chart, Technometrics, 10, 479-488.
    [49] Vance, L., C., 1992, A Bibliography of Statistical Quality Control Chart Techniques, 1970-1980, Journal of Quality Technology, 15(2) ,59-62.
    [50] Wiel, S. A. J., Tucker, W. T., Faltin, F. W., and Doganaksoy N., 1992, Agorithmic Statistical Process Control:Concepts and an Application, Technometrics, 34(3), 286-297
    [51] Woodall, W. H., 1985, The Statistical Design of Quality Control Charts, The Statistician, 34,155-160.
    [52] Woodall, W. H., 1986, Weaknesses of the Economic Design of Control Charts, Technometrics, 28, 408-409.
    [53] Zhang, G., and Berardi, V., 1997, Economic Statistical Design of Control Chart for Systems With Weibull In-Control Times, Computers and Industrial Engineering, 32, 575-586.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE