簡易檢索 / 詳目顯示

研究生: 王得權
論文名稱: 內頸動脈瘤瘤內速度與壓力分佈量測-不同人工支架幾何之效應
指導教授: 劉通敏
丁大為
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 107
中文關鍵詞: 內頸動脈瘤血液動力特性人工支架孔隙率視流觀測質點影像測速儀壓力
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據行政院衛生署近十年研究報告顯示,在台灣地區腦血管疾病
    一直高居國人十大死因之第二位,其中又以動脈瘤破裂致死占大多數,而人工支架為近年來治療動脈瘤的方法之一。在人工支架外形研究上,大多探討人工支架線徑與非商用人工支架形狀改變對瘤內流場之影響,且大多以直型母管為主,而針對商用人工支架去探討,大多為定性結果。在人工支架孔隙率(Cα)研究上,相關研究較少且大多以直型母管為主定性去觀察或是定量分析但卻是在穩態及實驗波形下。由上述可發現鮮少有文獻在脈動下以彎型母管搭配最危險之瘤體角度,定性與定量去探討人工支架形狀與孔隙率對於瘤內血液動力特性之影響。因此,本文旨在針對彎型母管之側向動脈瘤,在脈動下,以視流觀測法、質點影像測速儀及壓力量測,定性與定量探討人工支架形狀與孔隙率對於動脈瘤瘤內血液動力特性之影響,並與臨床實驗結果相互比較。在動脈瘤模型方面,瘤體與母管之夾角為45°,其選擇乃依據文獻報導,當瘤體角度為45°時,從血液動力特性觀點評估下較為危險(risky),母管曲率為2.5,形狀之參數變化為固定孔隙率(Cα=80%)之自製單螺旋狀與商用螺旋狀兩種,孔隙率之參數變化為利用商用人工支架探討孔隙率(一、二、三層,Cα=80%、60%、40%)之影響。ICA波形脈動流場參數中沃門斯里數(Womersley Number)為4.0,雷諾數變化範圍為202~384。實驗結果乃透過血液動力參數如瞬時速度場、瘤內活動力、壁面剪應力與壓力等來呈現動脈瘤瘤內之血液動力特性。在人工支架孔隙率研究上,結果顯示血液動力因子量值會隨著孔隙率的減少而呈指數函數下降。歸納出孔隙率與壁面剪應力之關係並提供臨床治療上加裝二層人工支架後能加速血拴形成與加裝三層人工支架附加效用有限之依據,此外,也可供人工支架製造商在設計人工支架時之參考依據。最後將本實驗結果與體外相關研究、實際臨床結果相互比較佐證,本實驗結果可供未來相關數值模擬比較驗證。


    摘要………………………………………………………Ⅰ 誌謝………………………………………………………Ⅲ 目錄………………………………………………………Ⅳ 圖表目錄…………………………………………………Ⅶ 符號說明………………………………………………ⅩⅣ 第一章 前言………………………………………………1 1.1 研究動機………………………………………………1 1.2 文獻回顧………………………………………………2 1.2.1 臨床研究……………………………………………2 1.2.2 模型實驗……………………………………………3 1.2.3 數值模擬……………………………………………5 1.3 文獻總結………………………………………………7 1.4 研究目的………………………………………………8 1.5 統御方程式與無因次化公式推導……………………9 第二章 實驗系統與方法 …………………………………11 2.1 流道系統………………………………………………11 2.2 實驗模型………………………………………………11 2.3 脈波產生器……………………………………………13 2.4 質點影像測速儀系統(Particle Image Velocimetry, PIV)…14 2.4.1 PIV系統簡介………………………………………14 2.4.2 PIV系統量測原理…………………………………16 2.4.3 PIV系統主要架構…………………………………17 2.5 視流觀測系統(Flow Visualization, FV)…………19 2.6 壓力量測系統…………………………………………20 2.7 工作流體………………………………………………21 2.8 實驗狀態………………………………………………22 2.9 實驗誤差………………………………………………23 第三章 結果與討論……………………………………….24 3.1 有無光折射係數匹配法之差異………………………24 3.2 體外45°動脈瘤模型-實驗與數值之結果比較………25 3.3 人工支架形狀之效應…………………………………26 3.3.1 動脈瘤內基本流場…………………………………26 3.3.2 瘤內活動力…………………………………………30 3.3.3 壁面剪應力…………………………………………31 3.3.4 壁面壓力……………………………………………33 3.4 人工支架孔隙率(Cα)之效應…………………………35 3.4.1 動脈瘤內基本流場…………………………………35 3.4.2 瘤內活動力…………………………………………37 3.4.3 壁面剪應力…………………………………………38 3.4.4 壁面壓力……………………………………………40 第四章 結論與未來建議………………………………….42 4.1 結論……………………………………………………42 4.2 本文主要貢獻…………………………………………46 4.3 未來建議………………………………………………46 參考文獻……………………………………………………48

    Acar, F., Men, S., Tayfur, V, Yilmaz, O., Erbayraktar, S. and Gu¨ner, E.M. (2006) In vivo intraaneurysmal pressure measurements in experimental lateral wall aneurysms before and after onyx embolization, Surgical Neurology., 66 :252–257.
    Aenis, M., Stancampiano, A.P., Wakhloo, A.K. and Lieber, B.B. (1995) “Modeling of Flow in a Straight Stented and Nonstented Side Wall Aneurysm Model”, ASME J. of Biomechanical Engineering., 19:206-212.
    Alzamora, M.G.., Rosahl, S.K., Lehmberg, J., Klisch, J. (2005) Life-threatening Bleeding From A Vertebral Artery Pseudoaneurysm After Anterior Cervical Spin Approach: Endovascular Repair by A Triple Stent-in-Stent Method. Case Report, Neuroradiology., 47:282-286.
    Bando, K., Berger, S.A. (2003) Research on fluid-dynamic design criterion of stent used for treatment of aneurysms by means of computational simulation, Computational Fluid Dynamics Journal., 11:527-531.
    Benndorf G., Herbon U., Sollmann W.P., Campi A., (2001) Treatment of A Ruptured Dissecting Vertebral Artery Aneurysm With Double Stent Placement: Case Report, AJNR. American Journal of Neuroradiology., 2:1844-1848.
    Burleson, A.C., Strother, C.M. and Turitto, V.T. (1995) Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics, Neurosurgery., 37(4):774-782; discussion 782-784.
    Brownlee, B.D., Tranmer, B.I. , Sevick, R.J., Karmy, G. and Curry, J.C. (1995) Spontaneous thrombosis of an unruptured anterior communicating artery aneurysm, Stroke., 26:1945-1949.
    Cebral, J.R., Rainald, L., Orlando, S. and Yim, P.J. (2001) On the model of carotid artery blood flow from magnetic resonance images, Bioengineering Conference ASME 2001., 50.
    Cil, B.E., Akpınar, E., Peynircioglu, B. and Cekirge, S. (2004) Utility of Covered Stents for Extracranial Internal Carotid Artery Stenosis, AJNR Am J Neuroradiol., 25:1168-1171.
    Cooke, J.P., Stamler, J., Andon, N., Davies, P.F., Mckinley, G., Loscalzo, J. (1990) Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol, American Journal of Physiology., 259:804-812
    Crawford, T., (1959) Some observations of the pathogenesis and natural history of intracranial aneurysms, Journal of Neurology,22: 259-266.
    Doerfler, A., Wanke, I., Egelhof, T., Stolke, D., Forsting, M. (2004) Double-stent method: therapeutic alternative for small wide-necked aneurysms, J Neurosurg., 100:150–154.
    Dotter, C.T., Judkins, M.P. (1964.) Transluminal treatment of arteriosclerotic obstruction. description of a new technic and a preliminary report of its application, Circulation., 30:654–670.
    Ferguson, G.G. (1972) Physucal factors in the initiation, growth, and rupture of human intracranial saccular aneurysms, J. Neurosurg., 37:666-677.
    Foutrakis, G., Yonas, H., Sclabassi, R. (1999) Saccular aneurysm formation in curved and bifurcating arteries, Am J Neuroradiol, 20:1309-1317.
    Hashimoto, T. (1984) Dynamics measurement of pressure and flow velocities in glass and silastic model berry aneurysms, Neurol. Res., 6:22-28.
    Hassler, O. (1961) Morphological studies on the large cerebral arteries with reference to the aetiology of subarachnoid haemorrhage, Acta Psychiatr Neurol Scand., 154:60-67.
    Hoi, Y., Meng, H., Woodward, S.H., Bendok, B.R., Hanel, R.A., Guterman, L.R. and Hopkins, L.N. (2004) Effects of arterial geometry on aneurysm growth: threedimensional computational fluid dynamics study, J. Neurosurg., 101:676-681.
    Imbesi, S.G. and Kerber, C.W. (2001) Analysis of slipstream flow in a wide-necked basilar artery aneurysm: Evaluation of potential treatment regimens, Am J Neuroradiol., 22:721-724.
    Kayembe, K.N., Sasahara M. and Hazama, F. (1984) Cerebral aneurysms and variations in the circle of willis, Stroke., 15(5):846-850.
    Li, Y.C. (2007) Numerical Studies on Obstructed Channel Flows Relevan to Turbine Blade Cooling and Intracranial Aneurysm Therapy.
    Lieber, B.B., Stancampiano, A.P., Wakhloo, A.K. (1997) Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity, Annals of Biomedical Engineering., 25:460-469.
    Lieber, B.B., Livescu, V., Hopkins, L.N. and Wakhloo, A.K. (2002) “Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow”, Ann. Biomed. Eng., 30:768-777.
    Liepsch, D.W., Steiger, H.J., Poll A. and Reulen H.J. (1987) Hemodynamic stress in lateral saccular aneurysms, Biorheology., 24(6):689-710.
    Liou, T.M., Chang, W.C. and Liao, C.C.(1997b) LDV measurements in lateral model aneurysms of various sizes, Experiments in Fluids., 23(4):317-324.
    Liou, T.M., Li, Y.C. and Juan, W.C. (2006) Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles, J. Biomechanics., 40(6):1268-1275.
    Liou, T.M. and Liao, C.C. (1997a) Flowfields in lateral aneurysm arising from parent vessels with different curvatures using PTV, Experiments in Fluids., 23:288-298.
    Liou, T.M. and Liou, S.N. (2004a) Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel, Journal of Experimental Mechanics., 44(3):253–260.
    Liou, T.M., Ting, T.W. and Chen, Y.M. (2004b) “Numerical Simulation on Intracranial Pulsatile Flow in a Curved Parent Vessel with a Lateral Aneurysm,”, The 11th National Computational Fluid Dynamics Conference, Taitung, Taiwan.
    MacDonald, D.J., Finlay, H.M., Canham, P.B. (2000) Directional wall strength in saccular brain aneurysms from polarized light microscopy, Ann Biomed Eng., 28:533–542.
    Malek, A.M., Alper, S.L., Izumo, S. (1999) Hemodynamic shear stress and its role in atherosclerosis, JAMA : The Journal of The American Medical Association., 282:2035-2042.
    Marks, M. P., Dake, M. D., Steinberg, G. K., Norbash, A. M. and Lane, B. (1994) “Stent Placement for Arterial and Venous Cerebrovascular Disease: Preliminary Clinical Experience”, Radiology., 191:441–446.
    Massound, T. F., Guglielmi, G., Vieula, C., Ji, F. and Duckwiler, G. R. (1994) Experimental saccular aneurysms I. Review of surgically constructed models and their laboratory applications, Neuroradilolgy., 36:537-546.
    Moore, J.E., Xu, C., Glagov, S., Zarins, C.K. and Ku, D.N. (1994) Fluid wall shear stresss measurements in a model of human abdominal aorta: oscillatory behavior and relationship to atherosclerosis, Atherosclerosis., 110:225-240.
    Nichols, W. and O’Rourke, M. (1990) McDonald’s flow in arteries, Lea & Febiger, Philadelphia, London.
    Niimi, H., Kawano, Y. and Sugit, I. (1984) Structure of blood flow through a curved vessel with an aneurysm, Biorheology., 21:603-615.
    Ohkubo, T., Fukazawa, R., Ikegami, E. and Ogawa, S. (2007) Reduced shear stress and disturbed flow may lead to coronary aneurysm and thrombus formations, Pediatrics International., 49(1):1-7.
    Redekop, G., Marotta, T., Weill, A. (2001) Treatment of traumatic aneurysms and arteriovenous fistulas of the skull base by using endovascular stents, J Neurosurg., 95:412–419.
    Rhee, K., Han, M.H. and Cha, S.H. (2002) Changes of flow characteristics by stenting in aneurysm models: influence of aneurysm geometry and stent porosity, Annals of Biomedical Engineering., 30:894-904.
    Rosenorn, J., Eskesen, V., Schmidtt, K. and Ronde, F. (1987) The risk of rebleeding from ruptured intracranial aneurysms, J. Neurosurg., 67:329-332.
    Roth, T.C., Chaloupka, J.C., Putman, .C.M., Ross, D.A., Weaver, E.M., Tarro, J., Wecht, D.M. and Sasaki, C.T. (1998) Percutaneous Direct-Puncture Acrylic Embolization of a Pseudoaneurysm after Failed Carotid Stenting for the Treatment of Acute Carotid Blowout, Am J . Neuroradiol., 19:912-916
    Sekhar, L.N. and Heros, R.C. (1981) Origin, growth, and rupture of saccular aneurysms: a review, Neurosurgery., 8(2):248-260.
    Serruys, P.W., Rensing, B.J. (2002) Handbook of coronary stents. 4th ed. Martin Dunitz, London.
    Steinman, D.A., Milner, J.S., Norley, C.J., Lownie, S.P., Holdsworth, D.W. (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm, Am J Neuroradiol., 24:559-566.
    Strother, C.M., Graves, V.B.and Rappe, A. (1992) Aneurysm hemodynamics: an experimental study, AJNR., 13(4):1089-1095..
    Stuhne, G.R. and Steinman, D.A. (2004) Finite-element modeling of the hemodynamics of stented aneurysms, Journal of Biomechanical Engineering., 126:382-387.
    Suzuki, J. and Ohara, H. (1978) Clinicopathological study of cerebral aneurysms: origin, rupture, repair, and growth, J Neurosurg., 48(4):505-514.
    Tsai, C.H. (2006) Study on the Intra-Aneurysmal Hemodynamics in the Internal Carotid Artery Using Image Reconstruction Method, Numerical Simulation, and Flow Visualization.
    Taylor, C.L., Yuan, Z., Selman, W.R., Ratcheson, R.A. and Rimm, A.A. (1995) Cerebral arterial aneurysm formation and rupture in 20,767 elderly patients: hypertension and other risk factors, J Neurosurg., 83(5):812-819.
    Torii, R., Oshima, M., Kobayashi, T., Takagi, K. and Tezduyar, T.E. (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures, Computational Mechanics., 38:482–490.
    Wang, Z., Ionita, C., Rudin, S., Hoffmann, K., Paxton, A. and Bednarek, D. (2004) Angiographic analysis of blood flow modification in cerebral aneurysm models with a new asymmetric stent, SPIE Proceedings of Medical Imaging 2002.
    Wardlaw, J.M. and White, P.M. (2000) The detection and management of unruptured intracranial aneurysms, Brain., 123:205–21
    Weir, B. and Macdonald, R. L. (1996) 214 intracranial aneurysms and subarachnoid hemorrhage: an overview ( In: Wilkins, R. H and Rengachary. S. S. eds), Neurosurgery., 2191-2213.
    Yu, S.C.M., Zhao, J.B. (1999) A steady flow analysis on the stented and non-stented sidewall aneurysm models, Medical Engineering & Physics., 21:133-141.
    行政院衛生署:中華民國公共衛生概況。行政院衛生署,2007

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE