研究生: |
施慕蘭 Shih, Mulaine |
---|---|
論文名稱: |
蘑菇型電極量測斑馬成魚與幼魚心電訊號 Zebrafish and its Larvae ECG Signal Recording by Mushroom-Shaped Microelectrodes |
指導教授: |
游萃蓉
Yew, Tri-Rung |
口試委員: |
彭慧玲
張兗君 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 奈米碳管 、微電極 、斑馬魚 |
外文關鍵詞: | CNT, Microelectrode, Zebrafish |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用蘑菇形狀金電極及奈米碳管蘑菇形狀金電極來量測斑馬成魚與幼魚的心電訊號,測試其在電生理訊號量測之應用,作為未來研究三維微電極在活體生物病理學研究相關應用的參考。
本研究主要採用奈米碳管低溫製程 (400 °C),將奈米碳管直接成長於蘑菇形狀金電極上。由於奈米碳管有大表面積、高電容與優良的生物相容性,三維的奈米碳管電極可以改善與待測細胞間的耦合能力和提高訊噪比,因此,奈米碳管蘑菇形狀金電極比蘑菇形狀金電極更具有量測電生理訊號的潛力。此外,本研究利用低溫製程製作的奈米碳管電極,也可用在軟性基板上。
本研究除使用奈米碳管蘑菇形狀金電極、蘑菇形狀金電極量測斑馬成魚離體心臟的心電訊號,並分析不同電極與裝置組合間所量得結果的差異,同時進行藥物的測試,並以等效電路模型進行分析。此外也量測斑馬幼魚心臟的心電訊號,用來展現三維微電極在各年齡斑馬魚之病理學心電量測應用的可能性。
This study is to investigate the detection of rhythmic electrical signals of adult Zebrafish and its larvae using both three dimensional (3D) gold microelectrode and 3D functionalized biocompatible direct-growth carbon nanotube (CNT) microelectrodes. This study also demonstrates the applicability of 3D microelectrode as a tool to study living organisms pathology in the future.
The CNTs were directly grown on 3D gold microelectrodes at 400 °C. With high surface area, capacitance and biocompatibility, 3D funtionalized CNTs improve coupling coefficient and signal-to-noise ratio. Therefore, the 3D CNTs microelectrodes reveal better potential for biosignal recording than 3D gold microelectrodes. In addition, low temperature fabrication process provides the feasibility of implementation with flexible polymer substrates.
The detected adult Zebrafish and its larvae signals were analyzed to compare the results by using different electrodes and system set-ups. The equivalent circuits were also compared for the explanation of measurement results. Furthermore, a preliminary drug test was conducted. Results show the potential application of 3D microelectrodes for all-age Zebrafish pathological Electrocardiogram (ECG) study.
1. Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275-309.
2. Chang B-Y, Park S-M. Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry. 2010;3:207-29.
3. Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano letters. 2003;3(5):597-602.
4. Randviir EP, Banks CE. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Analytical Methods. 2013;5(5):1098-115.
5. Pan AI, Lin M-H, Chung H-W, Chen H, Yeh S-R, Chuang Y-J, et al. Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording. Analyst. 2016;141(1):279-84.
6. Fendyur A, Spira ME. Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes. Frontiers in Neuroengineering. 2012;5:21.
7. Hai A, Spira ME. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab on a Chip. 2012;12(16):2865-73.
8. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics. 2007;8(5):353-67.
9. Liu CC, Li L, Lam YW, Siu CW, Cheng SH. Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation. Scientific Reports. 2016;6:25073.
10. Milan DJ, Jones IL, Ellinor PT, MacRae CA. In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. American Journal of Physiology - Heart and Circulatory Physiology. 2006;291(1):H269-H73.
11. Hassel D, Scholz EP, Trano N, Friedrich O, Just S, Meder B, et al. Deficient zebrafish ether-a-go-go–related gene channel gating causes short-QT syndrome in zebrafish reggae mutants. Circulation. 2008;117(7):866-75.
12. Yu F, Huang J, Adlerz K, Jadvar H, Hamdan MH, Chi N, et al. Evolving cardiac conduction phenotypes in developing zebrafish larvae: implications to drug sensitivity. Zebrafish. 2010;7(4):325-31.
13. Dhillon SS, Dóró É, Magyary I, Egginton S, Sík A, Müller F. Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs. PloS one. 2013;8(4):e60552.
14. Huang W-C, Hsieh Y-S, Chen IH, Wang C-H, Chang H-W, Yang C-C, et al. Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish. 2010;7(3):297-304.
15. Zhang X, Tai J, Park J, Tai Y-C, editors. Flexible MEA for adult zebrafish ECG recording covering both ventricle and atrium2014: IEEE.
16. Cao H, Yu F, Zhao Y, Zhang X, Tai J, Lee J, et al. Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium. Integrative Biology. 2014;6(8):789-95.
17. Zhang X, Beebe T, Jen N, Lee C-A, Tai Y, Hsiai TK. Flexible and waterproof micro-sensors to uncover zebrafish circadian rhythms: The next generation of cardiac monitoring for drug screening. Biosensors and Bioelectronics. 2015;71:150-7.
18. Forouhar AS, Hove JR, Calvert C, Flores J, Jadvar H, Gharib M, editors. Electrocardiographic characterization of embryonic zebrafish2004: IEEE.
19. Rendon-Morales E, Prance RJ, Prance H, Aviles-Espinosa R. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors. Applied Physics Letters. 2015;107(19):193701.
20. Brüggemann D, Wolfrum B, Maybeck V, Mourzina Y, Jansen M, Offenhäusser A. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology. 2011;22(26):265104.
21. Dimaki M, Vazquez P, Olsen MH, Sasso L, Rodriguez-Trujillo R, Vedarethinam I, et al. Fabrication and characterization of 3D micro-and nanoelectrodes for neuron recordings. Sensors. 2010;10(11):10339-55.
22. Gytis B, Emma M, Elisa C, Alberto A, Alberto M, Gian Nicola A, et al. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio. Journal of Neural Engineering. 2011;8(6):066013.
23. Hai A, Dormann A, Shappir J, Yitzchaik S, Bartic C, Borghs G, et al. Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. Journal of The Royal Society Interface. 2009;6(41):1153-65.
24. Hai A, Shappir J, Spira ME. In-cell recordings by extracellular microelectrodes. Nat Meth. 2010;7(3):200-2.
25. Hai A, Shappir J, Spira ME. Long-Term, Multisite, Parallel, In-Cell Recording and Stimulation by an Array of Extracellular Microelectrodes. Journal of Neurophysiology. 2010;104(1):559-68.
26. Hou JH, Kralj JM, Douglass AD, Engert F, Cohen AE. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents. Frontiers in physiology. 2014;5:344.
27. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nano. 2008;3(7):434-9.
28. Kim J-H, Kang G, Nam Y, Choi Y-K. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology. 2010;21(8):085303.
29. Lee SM, Byeon HJ, Lee JH, Baek DH, Lee KH, Hong JS, et al. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Scientific Reports. 2014;4:6074.
30. Musameh M, Lawrence NS, Wang J. Electrochemical activation of carbon nanotubes. Electrochemistry Communications. 2005;7(1):14-8.
31. Spira ME, Hai A. Multi-electrode array technologies for neuroscience and cardiology. Nat Nano. 2013;8(2):83-94.
32. Su H-C, Lin C-M, Yen S-J, Chen Y-C, Chen C-H, Yeh S-R, et al. A cone-shaped 3D carbon nanotube probe for neural recording. Biosensors and Bioelectronics. 2010;26(1):220-7.
33. Wang K, Fishman HA, Dai H, Harris JS. Neural stimulation with a carbon nanotube microelectrode array. Nano letters. 2006;6(9):2043-8.
34. Yeh S-R, Chen Y-C, Su H-C, Yew T-R, Kao H-H, Lee Y-T, et al. Interfacing Neurons both Extracellularly and Intracellularly Using Carbon− Nanotube Probes with Long-Term Endurance. Langmuir. 2009;25(13):7718-24.