研究生: |
廖彥宇 Yan-Yu Liao |
---|---|
論文名稱: |
在隨機存取無線感測網路中使用分散式訊源編碼之效能與時間延遲研究 The Efficiency and Delay of Distributed Source Coding in Random Access Sensor Networks |
指導教授: |
蔡育仁
Yuh-Ren Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 無線感測網路 |
外文關鍵詞: | Wireless sensor networks |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們分析在隨機存取無線感測網路中使用分散式訊源編碼的效能與時間延遲之研究。我們考慮在無線感測網路中每個感測器所觀察到的訊息都具有相關性,並且會把所得到的訊息透過直接連接的方式傳給中央處理器。由於我們考慮網路流量較低的情況,因此我們採用時槽式ALOHA隨機存取之通訊協定,如此一來時間將被切割成許多同步的時槽而且每個感測器自己都有獨立的機率去存取每個時槽。由於每個訊息間存有相關性,有些多餘的訊息會被重覆傳送來增加感測器的能量消耗。為了消除存在感測器間重覆的訊息,我們採用分散式訊源編碼。由於使用分散式訊源編碼,因此一個訊息的遺失可能會造成許多訊息無法順利的解碼回來,如此一來要成功解出每個感測器的訊息所需要的時間也會有所不同。因為有了這樣的特性,我們將用每個時間所成功解出所有訊息的比例,成功解出每個訊息所需的時間,以及成功解出每個訊息所需消耗的能量來做為評估分散式訊源編碼在時槽式ALOHA隨機存取之通訊協定的系統的效能。此外我們也將提出幾種不同的傳輸機率分配方式並且比較不同傳輸機率的分配對系統的效能有何影響,更進一步的我們發現媒體存取控制協定的設計會對系統的效能有很大的影響。最後我們將提出一個動態式媒體存取控制協定來改善系統的效能。
In this thesis, we analyze the efficiency and delay of distributed source coding (DSC) in sensor networks under the random access setting. Consider a network of N sensors that observes correlated information from the environment and sends the local data to a central processor through direct transmission links. Due to the low message rate in sensor networks, we adopt the slotted ALOHA random access protocol where the time is divided into synchronized time slots and each sensor is allowed to access the time slots with independent probabilities. To eliminate the redundancy in the transmission data, the sensors encode the local messages based on the Slepian-Wolf DSC method. Specifically, the network is divided into K clusters and we assume that the sensors are encoded sequentially in a cluster such that the decoding of a particular message is reliant on the successful decoding of all the messages encoded earlier in the sequence.
In this case, the loss of one message may result in the failure of other messages and the delay in the successful decoding of a particular message also varies from sensor to sensor. In this article, we analyze the performance of DSC in random access networks in terms of the rate of successful decoding, the average delay and the average energy consumption of each message. Specifically, we propose and compare different transmission probability assignments for DSC in the ALOHA network and emphasize the importance of the MAC design. Finally, we propose an adaptive MAC protocol such that improve the performance of our system.
[1] D. Slepian and J.K. Wolf, “Noiseless coding of correlated information sources,” IEEE Trans. Inform. Theory, vol.19, no. 4, pp. 471-480, 1973.
[2] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Inform. Theory, vol. 22, no. 1, pp. 1-10, 1976.
[3] T. Cover and J. Thomas, Elements of Information Theory. New York: Wiley, 1991
[4] T. Berger, “Multiterminal source coding,” in Proc. Lectures CISM Summer School Information Theory Approach Communications, July 1977, pp. 171-231.
[5] A. Wyner, “Recent results in the Shannon theory,” IEEE Trans. Inform. Theory, vol. 20, no. 1, pp. 2-10, 1974.
[6] S. Pradhan and K. Ramchandran, “Distributed source coding using syndromes (DISUS): Design and construction,” in Proc. Data Compression Conf., Snowbird, Utah, Mar. 1999, pp. 158-167.
[7] S. Pradhan and K. Ramchandran, “Distributed source coding: Symmetric rates and applications to sensor network,” in Proc. Data Compression Conf., Snowbird, Utah, Mar. 2000, pp. 363-372.
[8] S. Pradhan and K. Ramchandran, “Distributed source coding using syndromes (DISUS): Design and construction,” IEEE Trans. Inform. Theory, vol. 48, no. 3, pp. 626-643, Mar. 2003.
[9] J. Garcia-Frias and Y. Zhao, “Compression of correlated binary sources using turbo codes,” IEEE Commun. Lett., vol. 5, pp. 417-419, Oct. 2001.
[10] A. Aaron and B. Girod, “Compression with side information using turbo codes,” in Proc. Data Compression Conf., Snowbird, Utah, Mar. 2002, pp. 252-261.
[11] A. Liveris, Z. Xiong, and C. Georghiades, “Compression of binary sources with side information at the decoder using ldpc codes,” IEEE Commun. Lett., vol. 6, pp. 440-442, Oct. 2002.
[12] V. Stankovic, A. Liveris, Z. Xiong, and N. Georghiades, “Design of Slepian-Wolf codes by channel code partitioning,” in Proc. Data Compression Conf., Snowbird, Utah, Mar. 2004, pp. 302-311.
[13] N. Gehrig and P. Dragotti, “Symmetric and asymmetric Slepian-Wolf codes with systematic and non-systematic linear codes,” IEEE Commun. Lett., vol. 9, no. 1, pp. 61-63, Jan. 2005.
[14] R. Puri, A. Majumdar, P. Ishwar, and K. Ramchandran, “Distributed video coding in broadband wireless sensor networks,” IEEE Signal Processing Mag., vol. 23, no. 4, pp. 94-105, 2006.
[15] D. Marco and D. L. Neuhoff, “Reliability vs. efficiency in distributed source coding for field-gathering sensor networks,” in Proc. On the Third International Symposium on Information Processing in Sensor Networks (IPSN), Apr. 2004.
[16] Y. R. Tsai, Y. W. Hong, Y. Y. Liao, and K. J. Yang, “The Efficiency and Delay of Distributed Source Coding in Random Access Sensor Networks,” in Proc. IEEE WCNC, pp. 785-790, 2007.
[17] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th ed. McGraw-Hill, 2001.