研究生: |
陳威戎 Chen, Wei-Rong |
---|---|
論文名稱: |
磁控濺鍍鈦-矽-氮奈米複合膜之機械性質研究 The Mechanical Properties of Ti-Si-N Nanocomposite Films Deposited by Magnetron Sputtering |
指導教授: |
黃嘉宏
Huang, Jia-Hong 喻冀平 Yu, Ge-Ping |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 鈦-矽-氮奈米複合膜 |
外文關鍵詞: | Ti-Si-N nanocomposite film |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ti-Si-N films were deposited on P-type (100) Si wafers using unbalanced magnetron sputtering (UBMS) at different deposition durations. The purposes of this study were to investigate the mechanical properties of Ti-Si-N films with different thickness, especially the hardness and residual stress, and to prepare Ti-Si-N films with high hardness and large thickness suitable for industrial applications. The thickness of the thin films increased with increasing deposition time ranging from 281 to 2044 nm. The structure of the nanocomposite coatings characterized by X-ray diffraction (XRD) showed that the crystalline phase was TiN with (200) or (111) preferred orientation depending on thickness. The results of X-ray photoelectron spectroscopy (XPS) indicated the existence of Si3N4 bonding in the nanocomposites. Therefore, the Ti-Si-N films were TiN/SiNx nanocomposite. Nanocomposite specimen with a good combination of hardness and thickness was obtained, where the hardness was 37 GPa with a thickness of 2 mm. Optical laser curvature method and modified XRD sin2ψ method were used to measure the average residual stress and stress of TiN phase in the nanocomposite, respectively. The results indicated that the amorphous SiNx in the TiN/SiNx nanocomposite could significantly relieve the average residual stress ranging from 19 to 68%. The degree of stress relief increased with increasing film thickness, which may be the reason that the thickness of nanocomposite can reach 2 mm. From the calculation of fracture mechanics, the critical residual stress leading to delamination for each specimen decreases as the film thickness increases. When measured stress reaches critical stress, the film starts to delaminate.
本實驗利用非平衡磁控濺鍍系統(UBMS),於P 型(100)矽晶片上改變鍍膜時間以
製備鈦-矽-氮薄膜。此篇論文的目的為研究不同厚度下鈦-矽-氮薄膜的機械性質,特
別著重在殘留應力和硬度的部份,並且製備高硬度與高厚度的鈦-矽-氮薄膜以適合工
業應用。薄膜厚度隨著鍍膜時間的增加而上升,從281 nm 上升至 2044 nm。結構上藉
由X 光繞射 (XRD) 的測定得知,氮化鈦的優選方向為(111)方向或是(200)方向是取決
於厚度。而藉由X 光光電子儀 (XPS) 的測定得知在此複合材料裡有氮化矽的鍵結存
在。因此,在此實驗中的鈦-矽-氮薄膜為氮化鈦/氮化矽奈米複合材料。這些奈米複合
材料試片的硬度和膜厚達成了一個很好的結合,在硬度上達到37 GPa,而膜厚也達到
了2 μm。 利用雷射光學曲率及X 光繞射之改良式 sin2ψ 的方法可個別量測薄膜的平
均殘留應力,及氮化鈦相的應力。在氮化鈦/氮化矽奈米複合材料裡的非晶氮化矽可以
有效的釋放平均殘留應力,其範圍分別從19% 到68%。釋放殘留應力的程度隨著厚度
的上升而提高,此現象可能是奈米複合材料厚度可以到達2 μm 以上的主因。經由破裂
力學計算得知,薄膜可承受之臨界應力隨著膜厚增加而下降。當量測之真實應力達到
臨界應力計算值時,薄膜會開始剝落。
1 U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Surf. Coat. Technol., 41 (1990) 191.
2 H. Holleck, J. Vac. Sci. Technol., A 4 (1986) 2661.
3 W.D. Sproul, Thin Solid Films, 107 (1983) 141.
4 B. Navinsek, P. Panjan, I. Milosev, Surf. Coat. Technol., 97 (1997) 182.
5 S. Veprek. , S. Reiprich , Thin Solid Films, 268 (1995) 64.
6 S. Veprek, A. Niederhofer, K. Moto, Surf. Coat. Technol., 152 (2000) 133.
7 J. Prochazka , K. Karvankova, G.J. Martiza, V. Heijman, S. Veprek, J. Vac. Sci. Technol. B ,16 (1998) 19.
8 S. Veprek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jilek, M. Sima, Surf. Coat. Technol., 108-109 (1998) 138.
9 S. Zhang, D. Sun, Y. Fu, H. Du, Surf. Coat. Technol., 167 (2003) 113.
10 P. Holubar, M. Jilek, M. Sima, Surf. Coat. Technol., 145 (2000) 133.
11 J. Musil, H. Hruby, Thin Solid Films, 365 (2000) 104.
12 S. Veprek, S. Mukherjee, H.-D. Manぴnling, Jianli He, Mater. Sci. Eng., A340 (2003) 292.
13 Harish C. Barshilia, B. Deepthi, A,S Arun Prabhu, K.S Rajam, Surf. Coat. Technol., 201 (2006) 329.
14 J.S. Colligon, V. Vishnyakov, R. Valizadeh, S.E. Donnelly, S. Kumashiro, Thin Solid Films, 485 (2005) 148.
15 ChenHui Zhang, Jianbin Luo, Wenzhi Li, Darong Chen, J. Tribol., 125 (2003) 445.
16 S.M Rossnagel, Sputter Deposition, Opportunities for Innovation, in: W.D Sproul, L.O. Legg (Eds.), Advanced Surface Engineering, Techonic Publishing Co., Switzerlad, 1995.
17 McLeod PS, Hartsough LD, J. Vac. Sci. Technol., 14(1)(1977) 263
18 P.J. Kelly, R.D. Arnell, Vacuum, 56 (2000) 159..
19 D.G. Teer, Surf. Coat. Technol., 39-40 (1989) 565.
20 L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York , 1971.
21 Joanne L.Murray, Phase Diagram of Binary Titanium Alloys, ASM International, Ohio , 1987, p.176.
22 L. Huitman, J.-E Sundgren, J. E. Greene, J. Appl. Phys., 66(2) (1989) 536.
23 J. Pelleg, L.Z. Zevin, S. Lungo, and N.Croitora, Thin Solid Films, 197 (1991) 117.
24 Katauhiro Yokota, Kazuhiro Nakamura, Tomohiko Kasuya, Katsuhia Mukai, Masami Ohnishi, J. Phys. D: Appl. Phys., 37 (2004) 1095 .
25 J.E. Sundgren, B.O. Johansson, A. Rockett, S.A. Barnett, J.E. Greene, in: W.D.Sproul, J.E. Greene, J.A. Thornton (Eds.), Physics and Chemistry of Protective Coatings, American Institute of Physics, MA, 1986, p.95.
26 W. Alexander, J.F. Shackelford, "Materials Science and Engineering Handbook 3rd. edition" , CRC press (2001), p.472.
27 H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.E Sundgren, J. Appl. Phys., 80(12)(1996) 6725.
28 J. O. Kim, J. D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, J. Appl. Phys., 72(5) (1992) 1805.
29 H. Deville., F. Wohler., "Erstmalige Erwahnung von Si3N4", Liebigs Ann. Chem, 1857, p.104.
30 H. Okamoto, J. Phase Equilib. Diff., 26(3) (2005) 294.
31 http://www.accuratus.com/silinit.html
32 http://en.wikipedia.org/wiki/Silicon_nitride
33 S. Veprek, G.J. Maritza, V. Heijman, Surf. Coat. Technol., 201(2007) 6064.
34 S. Veprek, High Pressure Res., 26(2) (2006) 119.
35 Ming Kong, Weiji Zhao, Lun Wei, Geyang Li, J. Phys. D: Appl. Phys., 40 (2007) 2858.
36 Hans Soderberg, Magnus Oden, Jon M. Molina-Aldareguia, Lars Hultman, J. Appl. Phys., 97 (2005) 114327.
37 Xiaoping Wu, Huijuan Zhang, Jiawei Dai, Geyang Li, Mingyuan Gu, J. Vac. Sci. Technol. A, 23 (2005) 114.
38 R.F Zhang, S. Veprek, Mater. Sci. Eng. A 424 (2006) 128.
39 S. Veprek, H.-D. Mannling, P. Karvankova, J. Prochazka, Surf. Coat. Technol., 200 (2006) 3876.
40 J. Musil, J. Vlcek, Surf. Coat. Technol., 142-144 (2001) 357.
41 J. Prochazka, P. Karvankova, G.J. Maritza, V. Heijman, S. Veprek, Mater. Sci. Eng. A, 384 (2004) 102.
42 R.F. Zhang, S. Veprek, Thin Solid Films, 516 (2008) 2264.
43 S. Veprek, A.S. Argon, R.F. Zhang, Phil. Mag. Lett., 87(12) (2007) 955.
44 S. Veprek, G.J. Maritza, V. Heijman, Ruifeng Zhang, J. Phys. Chem. Solids, 68 (2007) 1161.
45 Ping Zhang, Zhihai Cai, Wanquan Xiong, Surf. Coat. Technol., 201 (2007) 6819.
46 Ma Dayan, Ma Shengli, Xu Kewei, S. Veprek, Ma, Mater. Lett., 59 (2005) 838.
47 S. Veprek, P. Karvankova, G.J. Maritza, V. Heikman, J. Vac. Sci. Technol. B, 23 (2005) 6.
48 S. Veprek, G.J. Maritza, V. Heijman, Surf. Coat. Technol., 202 (2008) 5063.
49 R.F. Steimle, M. Sadd, R. Muralidhar, R. Rao, B. Hardsky, S. Straub, B. E. White Jr, IEEE Trans. Nanotechnol., 2 (2003) 335.
50 S. Choi, S.-S Kim, M. Chang, H. Hwang, S. Jeon, C. Kim, Appl. Phys. Lett., 123110 (2005) 86.
51 Lun-Lun Chen, Chia-Hsuan Chang, Yuan-Sheng Lin, Yung-Hsien Wu, Jia-Hong Huang, Ge-Ping Yu, IEEE Electron Device Lett., 30 (2009) 617.
52 P. Scherrer, G□tt. Nachr, 2 (1918) 98.
53 Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York (1958), p.233.
54 D. Briggs and M.P. Seah, “Practical Surface Analysis by AES and XPS”, John Wiley & Sons, Inc., Chichester (1983).
55 The RUMP and Genplot (version 3.53.346.0) software of Computer Graphic Service, Ltd.
56 S. M. Sez, VLSI Technology, AT&T Bell Lab. Murry Hill, New Jersey (1983), p.184.
57 G. G. Stoney, Proc. R. Soc. Lond., A82 (1909) 172.
58 W. A. Brantley, J. Appl. Phys., 44 (1973) 534.
59 C.-H. Ma, J.-H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73.
60 John F. Watts, John Wolstenholme, “An Introduction to Surface Analysis by XPS and AES”, John Wiley & Sons Ltd., (2003) p.64.
61 http://srdata.nist.gov/xps/
62 C. Naresh , G. Hadand, J. Appl. Phys., 72 (7) (1992) 3072.
63 M.Diserens, J. Patscheider, F. Levy, Surf.Coat. Technol., 120–121 (1999) 158.
64 L. Wickikowski, B Kusz, L. Murawaki, K. Szaniawska, and B. Susla, Vaccum ,54 (1999) 221.
65 J. Pouilleau, D. Devilliers, F. Garrido, S, Durand-Vidal, and E. Mahe, Mater. Sci. Eng. B, 47 (1997) 235.
66 MultiPak software of Physical Electronics, Inc.
67 C.-H. Ma, J.-H. Huang, H. Chen, Surf. Coat. Technol., 200 (2006) 3868.
68 J.-H. Huang, K.-W. Lau, G.-P. Yu, Surf. Coat. Technol., 191 (2005) 17.
69 W.-J. Chou, G.-P. Yu, J.-H. Huang, Surf. Coat. Technol., 149 (2002) 7.
70 L.B. Freund, S. Suresh., “Thin film materials – stress, defect deformation and surface evolution”, Cambridge university press, (2003) p.262.