研究生: |
蔡明宗 Tsai, Ming-Tsung |
---|---|
論文名稱: |
壹:開發新穎北極光激酶抑制劑於抗癌藥物之研究 貳:設計與合成新穎自溶酵素S抑制劑於抗癌症轉移之應用 I. Discovery of Novel Aurora Kinase Inhibitors as Anticancer Agents ; II. Design and Synthesis of Novel Cathepsin S Inhibitors Against Cancer Metastasis |
指導教授: |
汪炳鈞
Uang, Biing-Jiun 謝興邦 Hsieh, Hsing-Pang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 534 |
中文關鍵詞: | 北極光激酶 、抗癌藥物 、自溶酵素 S 、癌症轉移 |
外文關鍵詞: | Aurora kinase, anti-cancer drug, Cathepsin S, Metastasis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文包含兩個部分
第壹部分:開發新穎北極光激酶抑制劑於抗癌藥物之研究
利用次結構(sub-structure)進行小分子化合物庫的搜尋,找到了以呋喃[2,3-d]嘧啶為核心結構的化合物I-48,其具有不錯的北極光激酶抑制效果,伴隨著含脲側鏈之化合物I-197的發現與人類直腸結腸癌細胞株(HCT-116)生長抑制活性的展現之後。透過合成方法的建立,藉此瞭解化合物I-48與I-197的呋喃[2,3-d]嘧啶之5號及6號位置之結構與活性關係(SAR),經由許多結構的修飾來增進活性與類藥性質,總共合成了67個衍生物。
化合物類藥性質的改善策略為:將極性基團引入5號苯環,如化合物I-225;將氫原子、氯原子與羥基丁基取代5號苯環,如化合物I-214、I-216與I-225與將結構簡化且核心結構改變,如化合物I-229與I-239d,其中化合物I-225對於北極光激酶A的IC50為21 nM,且能在26 nM濃度下引起四倍體DNA積聚現象。透過核心結構的修飾能有效提升藥物的藥效性質,同時提升化合物抑制癌細胞生長的能力,使得這類五-六駢環雜環在抗癌藥物的開發上更具有發展潛力。
第貳部分:設計與合成新穎自溶酵素S抑制劑於抗癌症轉移之應用
目前有越來越多證據指出自溶酵素S(CTSS)與癌轉移之間的關連性,透過CTSS抑制劑的開發,並挑選出活性不錯的化合物進行抗癌症轉移的相關活性測試,希望可以瞭解CTSS與癌症轉移的關連且同時發展抗癌症轉移的藥物。
由文獻報導知道CTSS抑制劑的結構特徵為胜肽或胜肽類衍生物,藉由親電子性彈頭,如醛基或腈基引入抑制劑的P1端,能有效增進CTSS的抑制活性。因此,合成了17個二胜肽類CTSS抑制劑來進行結構與活性關係的探討,其中,以醛基為彈頭的化合物II-63具有相當不錯的CTSS抑制活性(IC50 = 2 nM),而化合物II-63的差向異購物(化合物II-82,IC50 = 2506 nM)活性下降了1000倍,表示抑制劑的掌性中心是很重要的。此外,將P1端彈頭固定為腈基,P3端為脲基團或硫脲基團連結之化合物II-91a與II-91b亦被合成出來。具有不錯CTSS抑制活性的化合物II-63更進一步的進行抑制腫瘤生長、遷徙與侵襲效果之評估,與抑制基質裂解的實驗結果將於此處進行討論。
1. http://www.doh.gov.tw/CHT2006/DM/DM2_p01.aspx?class_no=25&level_no=1&doc_no=71722.
2. Witkop, B. Paul Ehrlich and his magic bullets□revisited. Proc. Am. Phil. Soc. 1999, 143, 540-557.
3. (a) Neidle, S. Cancer Drug Design and Discovery; Elsevier: London, 2008. (b) Kaufman, H. L.; Wadler, S. and Antman, K. Molecular Targeting in Oncology; Humana Press: New Jersey, 2008. (c) 美國癌症協會網站http://www.cancer.org/. (d) Carmen, A. and Carlos, M. J. Medicinal Chemistry of Anticancer Drugs; Elsevier: Amsterdam, 2008.
4. Gilman, A. and Philips, F. S. The biological actions and therapeutic applications of □-chloroethyl amines and sulfides. Science 1946, 103, 409-415.
5. (a) Finlay, A. C.; Hochstein, F. A.; Sobin, B. A. and Murphy, F. X. Netropsin, a new antibiotic produced by a streptomyces. J. Am. Chem. Soc. 1951, 73, 341-343. (b) Goodsell, D. S.; Ng, H. L.; Kopka, M. L.; Lown, J. W. and Dickerson, R. E. Structure of a dicationic monoimidazole lexitropsin bound to DNA. Biochemistry 1995, 34, 16654-16661.
6. (a) Müller, B. A. Imatinib and its successors–how modern chemistry has changed drug development. Curr. Pharm. Des. 2009, 15, 120-133. (b) Triggle, D. and Taylor, J. Comprehensive Medicinal Chemistry II; Elsevier: London, 2007; p 183-220.
7. Izumi, Y.; Xu, L.; de Tomaso, E.; Fukumura, D. and Jain, R. K. Herceptin acts as an anti-angiogenic cocktail. Nature 2002, 416, 279-280.
8. Khuri, F. R.; Nemunaitis, J.; Ganly, I.; Arseneau, J.; Tannock, I. F.; Romel, L.; Gore, M.; Ironside, J.; MacDougall, R. H.; Heise, C.; Randlev, B.; Gillenwater, A. M.; Bruso, P.; Kaye, S. B.; Hong, W. K. and Kirn, D. H. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 2000, 6, 879-885.
9. (a) Druker, B. J. and Lydon, N. B. Lessons learned from the development of an Abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J. Clin. Invest. 2000, 105, 3-7. (b) Sánchez-Serrano, I. Success in translational research: lessons from the development of bortezomib. Nat. Rev. Drug Dis. 2006, 5, 107-115. (c) Gill, A. L.; Verdonk, M. L.; Boyle, R. G. and Richard, T. A. Comparison of physicochemical property profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical development. Curr. Top. Med. Chem. 2007, 7, 1408-1422.
10. Stancy, D. Z. and Patric, J. M. Bevacizumab: an angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann. Pharmacother. 2004, 38, 1258-1264.
11. Yancapoulos, G. D.; Davis, S. and Gale, N. W. Vascular-specific growth factors and blood vessel formation. Nature 2000, 407, 242-248.
12. Midgley, R. and Kerr, D. Bevacizumab□current status and future directions. Ann. Oncol. 2005, 16, 999-1004.
13. Alderden, R. A.; Hall, M. D. and Hambley, T. W. The discovery and development of cisplatin. J. Chem. Edu. 2006, 83, 728-734.
14. Chen, G.-Q.; Shi, X.-G.; Tang, W.; Xiong, S.-M.; Zhu, J.; Cai, X.; Han, Z.-G.; Ni, J. H.; Shi, G.-Y.; Jia, P.-M.; Liu, M.-M.; He, K.-L.; Niu, C.; Ma, J.; Zhang, P.; Zhang, T.-D.; Paul, P.; Naoe, T.; Kitamura, K.; Miller, W.; Waxman, S.; Wang, Z.-Y.; The, H,; Chen, S. J. and Chen, Z. Used of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effect on APL cells. Blood 1997, 89, 3345-3353.
15. Hsieh, R. K. Molecular targeted therapy for solid tumors. Formosan. J. Med. 2003, 7, 222-226.
16. (a) Adams, J. A. Kinetic and Catalytic Mechanisms of Protein Kinases. Chem. Rev. 2001, 101, 2271-2290. (b) Bridges, A. J. chemical inhibitors of protein kinases. Chem. Rev. 2001, 101, 2541-2571.
17. Laufer, S. A.; Domeyer, D. M.; Scior, T. R. F.; Albrecht, W. And Hauser, D. R. J. Synthesis and biological testing of purine derivatives as potential ATP-competitive kinase inhibitors. J. Med. Chem. 2005, 48, 710-722.
18. (a) Backes, A. C.; Zech, B.; Felber, B.; Klebl., B. and Müller, G. Small-molecule inhibitors binding to protein kinases. Part I: exceptions from the traditional pharmacophore approach of type I inhibition. Expert Opin. Drug Discov. 2008, 3, 1409-1425. (b) Backes, A. C.; Zech, B.; Felber, B; Klebl, B. and Müller, G. Small-molecule inhibitors binding to protein kinases. Part II: the novel pharmacophore approach of type II and type III inhibition. Expert Opin. Drug Discov. 2008, 3, 1427-1449.
19. Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T. and Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912-1934.
20. Weinmann, H. and Metternich, R. Drug discovery process for kinase inhibitors. ChemBioChem 2005, 6, 455-459.
21. http://nobelprize.org/nobel_prizes/
22. Malumbres, M. and Barbacid, M. Cell cycle kinases in cancer. Curr. Opin. Genetics Dev. 2007, 17, 60-65.
23. Li, J. J. and Li, S. A. Mitotic kinases: The key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol. Ther. 2006, 111, 974-984.
24. Jackson, J. R.; Patrick, D. R.; Dar, M. M. and Huang, P. S. Discovery and development of aurora kinase inhibitors as anticancer agents. Nat. Rev. Cancer 2007, 7, 107-117.
25. Pollard, J. R. and Mortimore, M. J. Med. Chem. 2009, 52, 2629-2651.
26. (a) Colotta, F. and Mantovani, A. Targeted Therapies in Cancer, Vol. 5: Aurora Kinases and Their Inhibitors: More Than One Target and One Drug; Springer: Now York, 2008. (b) Glover, D. M.; Leibowitz, M. H.; McLean, D. A. and Parry, H. Mutations in Aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 1995, 81, 95-105. (c) Bischoff, J. R.; Anderson, L.; Zhu, Y.; Mossie, K.; Ng, L.; Souza, B.; Schryver, B.; Flanagan, P.; Clairvoyant, F.; Ginther, C.; Chan, C. S. M.; Novotny, M.; Slamon, D. J. and Plowman, G. D. A homologue of Drosoplila Aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 1998, 17, 3052-3065.
27. Macarulla, T.; Ramos, F. J. and Tabernero, J. Principles of Molecular Oncology, 3rd Ed., Ch. 16: Aurora Kinases: A New Target for Anticancer Drug Development, Humana Press: New Jersey, 2008.
28. Zhang, X. Aurora kinases. Curr. Bio. 2008, 18, R146-148.
29. Carmena, M. and Earnshaw, W. C. The cellular geography of Aurora kinases. Nat. Rev. Mol. Cell Bio. 2003, 4, 842-854.
30. (a) Carvajal, R. D.; Tse, A. and Schwartz, G. K. Aurora kinases: new targets for cancer therapy. Clin. Cancer Res. 2006, 12, 6869-6875. (b) Biggins, S. Correcting SYNful attachments. Nat. Cell Bio. 2004, 6, 181-183.
31. Duesberg, P.; Li, R.; Sachs, R; Fabarius, A.; Upender, M. B. and Hehlmann, R. Cancer drug resistance: The central role of the karyotype. Drug Resist. Updates 2007, 10, 51-58.
32. (a) Ikezoe, T. Aurora kinases as an anti-cancer target. Cancer Lett. 2008, 262, 1-9. (b) Sausville, E. A. Aurora kinases as an anti-cancer target. Nat. Med. 2004, 10, 234-235. (c) Marumoto, T.; Zhang, D. and Saya, H. Aurora-A□a guardian of poles. Nat. Rev. Cancer 2005, 5, 42-50. (d) Mountzios, G.; Terpos, E. and Dimopoulos, M.-A. Aurora Kinases as Anticancer Drug Targets. Cancer Treat. Rev. 2008, 34, 175-182.
33. Gautschi, O.; Heighway, J.; Mack, P. C.; Purnell, P. R.; Lara Jr., P. N. and Gandara, D. R. Aurora kinases as targets for cancer therapy. Clin. Cancer Res. 2008, 14, 1639-1648.
34. Harrington, E. A.; Bebbington, D.; Moore, J.; Rasmussen, R. K.; Ajose-Adeogun, A. O.; Nakayama, T.; Graham, J. A.; Demur, C.; Hercend, T.; Diu-Hercend, A.; Su, M.; Golec, J. M. C. and Miller, K. M. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 2004, 10, 262-267.
35. McLaughlin, J.; Markovtsov, V.; Li, H.; Wong, S.; Gelman, M.; Zhu, Y.; Franci, C.; Lang, D. W.; Pali, E.; Lasaga, J.; Low, C.; Zhao, F.; Chang, B.; Gururaja, T. L.; Xu, W.; Baluom, M.; Sweeny, D.; Carroll, D.; Sran, A.; Thota, S.; Parmer, M.; Romane, A.; Clemens, G.; Grossbard, E.; Qu, K.; Jenkins, Y.; Kinoshita, T.; Tayler, V.; Holland, S. J.; Argade, A.; Singe, R.; Pine, P.; Payan, D. G. and Hitoshi, Y. Preclinical characterization of Aurora kinase inhibitor R763/AS703569 identified through an image-based phenotypic screen J. Cancer Res. Clin. Oncol. 2009, ASAP.
36. http://clinicaltrials.gov/ 美國國家衛生研究院(NIH)網站.
37. Cheung, C. H. A.; Coumar, M. S.; Hsieh, H.-P. and Chang, J.-Y. Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin. Investig. Drugs 2009, 18, 379-398.
38. Mortlock, A. A.; Foote, K. M.; Heron, N. M.; Jung, F. H.; Pasquet, G.; Lohmann, J. J.; Warin, N.; Renaud, F.; Savi, C. D.; Roberts, N. J.; Johnson, T.; Dousson, C. B.; Hill, G. B.; Perkins, D.; Hatter, G.; Wilkinson, R. W.; Wedge, S. R.; Heaton, S. P.; Odedra, R.; Keen, N. J.; Crafter, C.; Brown, E.; Thompson, K.; Brightwell, S.; Khatri, L.; Brady, M. C.; Kearney, S.; McKillop, D.; Rhead, S.; Parry, T. and Green, S. Discovery, synthesis, and in vivo activity of a new class of pyrazoloquinazolines as selective inhibitors of Aurora B kinase. J. Med. Chem. 2007, 50, 2213-2224.
39. Wilkinson, R. W.; Odedra, R.; Heaton, S. P.; Wedge, S. R.; Keen, N. J.; Crafter, C.; Foster, J. R.; Brady, M. C.; Bigley, A.; Brown, E.; Byth, K. F.; Barrass, N. C.; Mundt, K. E.; Foote, K. M.; Heron, N. M.; Jung, F. H.; Mortlock, A. A.; Boyle, F. T. and Green, S. AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin. Cancer Res. 2007, 13, 3682-3688.
40. Manfredi, M. G.; Ecsedy, J. A.; Meetze, K. A.; Balani, S. K.; Burenkova, O.; Chen, W.; Galvin, K. M.; Hoar, K. M.; Huck, J. J.; Leroy, P. J.; Ray, E. T.; Sells, T. B.; Stringer, B.; Stroud, S. G.; Vos, T. J.; Weatherhead, G. S.; Wysong, D. R.; Zhang, M.; Bolen, J. B. and Claiborne, C. F. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 4106-4111.
41. Howard, S.; Berdini, V.; Boulstridge, J. A.; Carr, M. G.; Cross, D. M.; Curry, J.; Devine, L. A.; Early, T. R.; Fazal, L.; Gill, A. L.; Heathcote, M.; Maman, S.; Matthews, J. E.; McMenamin, R. L.; Navarro, E. F.; O’Brien, M. A.; O’Reilly, M.; Rees, D. C.; Reule, M.; Tisi, D.; Williams, G.; Vinkovic, M. and Wyatt, P. G. Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent Aurora kinase activity. J. Med. Chem. 2009, 52, 379-388.
42. Carpinelli, P.; Ceruti, R.; Giorgini, M. L.; Cappella, P.; Gianellini, L.; Croci, V.; Degrassi, A.; Texido, G.; Rocchetti, M.; Vianello, P.; Rusconi, L.; Storici, P.; Zugnoni, P.; Arrigoni, C.; Soncini, C.; Alli, C.; Patton, V.; Marsiglio, A.; Ballinari, D.; Pesenti, E.; Fancelli, D. and Moll, J. PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. Mol. Cancer Ther. 2007, 6, 3158-3168.
43. Gontarewicz, A.; Balabanov, S.; Keller, G.; Colombo, R.; Graziano, A.; Pesenti, E.; Benten, D.; Bokemeyer, C.; Fiedler, W.; Moll, J. and Brummendorf, T. H. Simultaneous targeting of Aurora kinases and Bcr-Abl kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR-ABL mutations including T315I. Blood 2008, 111, 4355-4364.
44. Foloppe, N.; Fisher, L. N.; Howes, R.; Kierstan, P.; Robertson, A. G. S. and Surgenor, A. E. Structure-based design of novel Chk1 inhibitors: insights into hydrogen bonding and protein-ligand affinity. J. Med. Chem. 2005, 48, 4332-4345.
45. Pyo, J. I.; Lee, S. H. and Cheong, C. S. A facile synthesis of some substituted furopyrimidine derivatives. J. Heterocyclic Chem. 2006, 43, 1129-1133.
46. Dimauro, E. F.; Newcomb, J.; Nunes, J. J.; Bemis, J. E.; Boucher, C.; Buchanan, J. L.; Buckner, W. H.; Cheng, A.; Faust, T.; Hsieh, F.; Huang, X.; Lee, J. H.; Marshall, T. L.; Martin, M. W.; McGowan, D. C.; Schneider, S.; Turci, S. M.; White, R. D. and Zhu, X. Discovery of 4-amino-5,6-biaryl-furo[2,3-d]pyrimidines as inhibitors of Lck: development of an expedient and divergent synthetic route and preliminary SAR. Bioorg. Med. Chem. Lett. 2007, 17, 2305-2309.
47. (a) Dauzonne, D. and Adam-Launay, A. A convenient procedure for the preparation of 5,6-dihydro-6-nitro-5-phenylfuro[2,3-d]pyrimidin -4(3H)-ones and 5-phenylfuro[2,3-d]pyrimidin-4(3H)-ones. Tetrahedron 1992, 48, 3069-3080. (b) Dauzonne, D. and Royer, S. A convenient synthesis of 3-chloro-3,4-dihydro-4-hydroxy-3-nitro-2- phenyl-2H-1-benzopyrans. Synthesis 1990, 66-70. (c) Dauzonne, D. and Demerseman, P. A general and unexpected synthesis of 2-(2-chloro-2-nitro-ethenyl)phenols. Synthesis 1987, 1020-1022.
48. Miyazaki, Y.; Matsunaga, S.; Tang, J. Maeda, Y. Nakano, M.; Philippe, R. J.; Shibara, M.; Liu, W.; Sato, H.; Wang, L. and Nolte, R. T. Novel 4-amino-furo[2,3-d]pyrimidines as Tie-2 and VEGFR2 dual inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 2203-2207.
49. Martin-Kohler, A.; Widmer, J.; Bold, G.; Meyer, T.; Séquin, U. and Traxler, P. Furo[2,3-d]pyrimidines and oxazolo[5,4-d]pyrimidines as inhibitors of receptor tyrosine kinases (RTK). Helv. Chim. Acta 2004, 87, 956-975.
50. (a) Nakano, M. and Maeda, Y. Novel chemical compounds. WO05061516A1, 2005. (b) Kim, J. T.; Hamilton, A. D.; Bailey, C. M.; Domoal, R. A.; Wang, L.; Anderson, K. S. and Jorgensen, W. L. FEP-Guided selection of bicyclic heterocycles in lead optimization for non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Am. Chem. Soc. 2006, 128, 15372-15373. (c) Doyle, M. P.; Siegfried, B.; Dellaria, J. F. Alkyl nitrile-metal halide deamination reactions. 2. Substitutive deamination of arylamines by alkyl nitriles and copper(II) halides. A direct and remarkably efficient conversion of arylamines to aryl halides. J. Org. Chem. 1977, 42, 2426-2431.
51. Maeda, Y.; Nakano, M.; Sato, H.; Miyazaki, Y.; Schweiker, S. L.; Smith, J. L. And Truesdale, A. T. 4-Acylamino-6-arylfuro[2,3-d] pyrimidines: potent and selective glycogen synthase kinase-3 inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 3907-3911.
52. Feng, X.; Lancelots, J.-L.; Gillard, A.-C.; Landelle, H. and Rault, S. First synthesis of 5,6-dihydro-4H-furo[3,2-f]pyrrolo[1,2-a][1,4] diazepines. J. Heterocyclic Chem. 1998, 35, 1313-1318.
53. (a) Watanuki, S.; Sakamoto, S.; Hirada, H.; Kikuchi, K.; Kuramochi, T.; Kawaguchi, K.; Okazaki, T. and Tsukamoto, S. Acid-mediated cyclization of 3-benzoyl-2-cyano-butyronitrile to 2-amino-4-methyl-5- phenylfuran-3-carbonitrile. Heterocycles, 2004, 62, 127-130. (b) Sabnis, R. W.; Rangnekar, D. W. and Sonawane, N. D. 2-Aminothiophenes by the Gewald reaction. J. Heterocyclic Chem. 1999, 36, 333-345.
54. (a) Lima, L. M. and Barreiro, E. J. Bioisosterism: a useful strategy for molecular modification and drug design. Curr. Med. Chem. 2005, 12, 23-49. (b) Patani, G. A. and LaVoie, E. J. Bioisosterism: a rational approach in drug design. Chem. Rev. 1996, 96, 3147-3176.
55. Jordan, A. M. and Roughley, S. D. Drug discovery chemistry: a primer for non-specilist. Drug Discov. Today 2009, ASAP.
56. Barnes, D. M.; Haight, A. R.; Hameury, T.; McLaughlin, M. A.; Mei, J.; Tedrow, J. S. and Toma, J. D. R. New conditions for the synthesis of thiophenes via the Knoevenagel/Gewald reaction sequence. Application to the synthesis of a multitargeted kinase inhibitor. Tetrahedron, 2006, 62, 11311-11319.
57. Traxler, P. M.; Furet, P.; Mett, H.; Buchdunger, E.; Meyer, T. and Lydon, N. 4-(Phenylamino)pyrrolopyrimidines: potent and selective, ATP site directed inhibitors of the EGF-receptor protein tyrosine kinase. J. Med. Chem. 1996, 39, 2285-2292.
58. Norman, M. H.; Chen, N.; Chen, Z.; Fotsch, C.; Hale, C.; Han, N.; Hurt, R.; Jenkins, T.; Kincaid, J.; Liu, L.; Lu, Y.; Moreno, O.; Santora, V. J.; Sonnenberg, J. D. and Karbon, W. Structure-activity relationships of a series of pyrrolo[3,2-d]pyrimidine derivatives and related compounds as neuropeptide Y5 receptor antagonists. J. Med. Chem. 2000, 43, 4288-4312.
59. Redman, A. M.; Dumas, J. and Scott, W. J. Preparation of 5-substituted 3-aminofuran-2-carboxylate esters. Org. Lett. 2000, 2, 2061-2063.
60. Bauser, M.; Delapierre, G.; Hauswald, M.; Flessner, T.; D’Urso, D.; Hermann, A.; Beyreuther, B.; Vry, J. D.; Spreyer, P.; Reissmüller, E. and Meier, H. Discovery and optimization of 2-aryl oxazolo-pyrimidines as adenosine kinase inhibitors using liquid phase parallel synthesis. Bioorg. Med. Chem. Lett. 2004, 14, 1997-2000.
61. Ferris, J. P. and Orgel, L. E. Studies in prebiotic synthesis. I. aminomalononitrile and 4-amino-5-cyanoimidazole. J. Am. Chem. Soc. 1966, 88, 3829-3831.
62. Yoshida, S.; Tendo, A.; Kobayashi, K.; Yamakawa, T. and Shinohara, Y. Xanthine oxidase inhibitors. WO03042185, 2003.
63. Middleton, W. J. Reactions of 2,2-dicyano-3,3-bis(trifluoromethyl) oxirane with thiocarbonyl compounds. J. Org. Chem. 1966, 31, 3731-3734.
64. Saikia, A.; Chetia, A.; Bora, U. and Boruah, R. C. A facile synthesis of 1,6-diketones via a three-component Michael addition reaction. Synlett 2003, 10, 1506-1508.
65. Foley, L. H. An efficient synthesis of 2-chloro-3-carboethoxy- or 2-chloro-3-cyano- 4,5-disubstituted and 5-substituted pyrroles. Tetrahedron Lett. 1994, 35, 5989-5992.
66. Feng, X.; Lancelot, J.-C.; Prunier, H. and Rault, S. First synthesis of 4H-furo[3,2-f]pyrrolo[1,2-a][1,4] diazepines. J. Heterocyclic Chem. 1996, 33, 2007-2011.
67. Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, R. S.; Cai, D. and Larsen, R. D. Synthesis of 3-pyridylboronic acid and its pinacol ester. Application of 3-pyridylboronic acid in Suzuki coupling to prepare 3-pyridin-3-ylquinoline. Org. Synth. 2005, 81, 89-93.
68. Kerns, E. H. and Di, L. Drug-like properties: concepts, structure design and methods: from ADME to toxicity optimization; Academic Press: Burlington, USA, 2008.
69. Kerns, E. H. and Di, L. Pharmaceutical profiling in drug discovery. Drug Discov. Today 2003, 8, 316-323.
70. Kobayashi, K.; Sugie, A.; Takahashi, M.; Masui, K. and Mori, A. Palladium-catalyzed coupling reactions of bromothiophenes at the C-H bond adjacent to the sulfur atom with a new activator system, AgNO3/KF. Org. Lett. 2005, 7, 5083-5085.
71. Kier, L. B. and Hall, L. H. Bioisosterism: quantitation of structure and property effects. Chem. Biodiv. 2004, 1, 138-151.
72. Meshram, H. M.; Reddy, P. N.; Sadashiv, K. and Yadav, J. S. Amberlyst-15®-promoted efficient 2-halogenation of 1,3-keto-esters and cyclic ketones using N-halosuccinimides. Tetrahedron Lett. 2005, 46, 623-626.
73. Lipinski, C. A.; Lombardo, F.; Dominy, B. W. and Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3-26.
74. (a) Chambers, A. F.; Groom, A. C. and MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2002, 2, 563-572. (b) Fidler, I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 2003, 3, 453-458. (c) Brooks, S. A.; Lomax-Browne, H. J.; Carter, T. M.; Kinch, C. E. and Hall, D. M. S. Molecular interactions in cancer cell metastasis. Acta Histochem. 2009, ASAP.
75. (a) Sloane, B. F. and Honn, K. V. Cysteine proteinases and metastasis. Cancer Metastasis Rev. 1984, 3, 249-263. (b) López-Otín, C. and Matrisian, L. M. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer, 2007, 7, 800-808.
76. Gocheva, V. and Joyce, J. A. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007, 6, 60-64.
77. Dass, K.; Ahmad, A.; Azmi, A. S.; Sarkar, S. H. and Sarkar, F. H. Evolving role of uPA/uPAR system in human cancers. Cancer Treat. Rev. 2008, 34, 122-136.
78. Schmalfeldt, B.; Kuhn, W.; Reuning, U.; Pace, L.; Dettmar, P.; Schmitt, M.; Jänicke, F.; Höfler, H. and Graeff, H. Primary tumor and metastasis in ovarian cancer differ in their content of urokinase-type plasminogen activator, its receptor, and inhibitors types 1 and 2. Cancer Res. 1995, 55, 3958-3963.
79. Duffy, M. J. The Urokinase plasminogen activator system: role in malignancy. Curr. Pharm. Des. 2004, 10, 39-49.
80. Mazar, A. P. Urokinase plasminogen activator receptor choreographs multiple. Ligand interactions: implications for tumor progression and therapy. Clin. Cancer Res. 2008, 14, 5649-5655.
81. Egeblad, M. and Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2002, 2, 161-174.
82. Deryugina, E. I. and Quigley, J. P. Mechanisms of invasion and metastasis in human neuroblastoma. Cancer Metastasis Rev. 2006, 25, 9-34.
83. Friedl, P. and Wolf, K. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res. 2008, 68, 7247-7249.
84. (a) Overall, C. M. and Kleifeld, O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 2006, 6, 227-239. (b) Coussens, L. M.; Fingleton, B. and Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002, 295, 2387-2392. (c) Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Dis. 2006, 5, 785-799.
85. Mohamed, M. M. and Sloane, B. F. Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 2006, 6, 764-775.
86. Palermo, C. and Joyce, J. A. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol. Sci. 2007, 29, 22-28.
87. Puente, X. S.; Sánchez, L. M.; Overall, C. M. and Lípez-Otón, C. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 2003, 4, 544-558.
88. (a) Chang, W.-S. W.; Wu, H.-R.; Yeh, C.-T.; Wu, C.-W and Chang, J.-Y. Lysosomal cysteine proteinase cathepsin S as a potential target for anti-cancer therapy. J. Cancer Mol. 2007, 3, 5-14. (b) Berdowska, I. Cysteine proteases as disease markers. Clin. Chim. Acta 2004, 342, 41-69.
89. (a) Brömme, D. and Kaleta, J. Thiol-dependent cathepsins: pathophysiological implications and recent advances in inhibitor design. Curr. Pharm. Des. 2002, 8, 1639-1658. (b) Leroy, V. and Thurairatnam, S. Cathepsin S inhibitors. Expert Opin. Ther. Patents 2004, 14, 301-311.
90. (a) Flannery, T.; Gibson, D.; Mirakhur, M.; McQuaid, S.; Greenan, C.; Trimble, A.; Walker, B.; McCormick, D. and Johnston, P. G. The clinical significance of cathepsin S expression in human astrocytomas. Am. J. Pathol. 2003, 163, 175-182. (b) Flannery, T.; McQuaid, S.; Mcgoohan, C.; McConnell, R. S.; Mcgregor, G.; Mirakhur, M.; Hamilton, P.; Diamond, J.; Cran, G.; Walker, B.; Scott, C.; Martin, L.; Ellison, D.; Patel, C.; Nicholson, C.; Mendelow, D.; McCormick, D. and Johnston, P. G. Cathepsin S expression: An independent prognostic factor in glioblastoma tumours–a pilot study. Int. J. Cancer 2006, 119, 854-860. (c) Bing, W.; Jiusong, S.; Min, Y.; Anders, G.; Harold, A. C.; Raghu, K. and Shi, G. P. Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J. Biol. Chem. 2006, 281, 6020-6029.
91. Link, J. O. and Zipfel, S. Advances in cathepsin S inhibitor design. Current Opinion in Drug Discovery & development, 2006, 9, 471-482.
92. Brömme, D. and Klaus, J. L.; Okamoto, K.; Rasnick, D and Palmer, J. T. Peptidyl vinyl sulphones : a new class of potent and selective cysteine protease inhibitors. Biochem. J. 1996, 315, 85-89. (b) Cywin, C. L.; Firestone, R. A.; NcNeil, D. W.; Grygon, C. A.; Crane, K. M.; White, D. M.; Kinkade, P. R.; Hopkins, J. L.; Davidson, W.; Labadia, M. E.; Wildeson, J; Morelock, M. M.; Peterson, J. D.; Raymond, E. L.; Brown, M. L. and Spero, D. M. The design of potent hydrazones and disulfides as cathepsin S inhibitors. Bioorg. Med. Chem. 2003, 11, 733-740. (c) Yamashita, D. S. and Dodds, R. A. Cathepsin K and the design of inhibitors of cathepsin K. Curr. Pharm. Des. 2000, 6, 1-24. (d) Thompson, S. K.; Halbert, S. M.; Bossard, M. J.; Tomaszek, T. A.; Levy, M. A.; Zhao, B.; Smith, W. W.; Abdel-Meguid, S. S.; Janson, C. A.; D’Alessio, K. J.; McQueney, M. S.; Amegadzie, B. Y.; Hanning, C. R.; DesJarlais, R. L.; Briand, J.; Sarkar; S. K.; Huddleston, M. J.; Ijames, C. F.; Carr, S. A.; Garnes, K. T.; Shu, A.; Heys, J. R.; Bradbeer, J.; Zembryki, D.; Lee-Rykaczewski, L.; James, I. E.; Lark, M. W.; Drake, F. H.; Gowen, M.; Gleason, J. G. and Veber, D. F. Design of potent and selective human cathepsin K inhibitors that span the active site. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14249-14254.
93. (a) Shindo, K.; Suzuki, H. and Okuda, T. Paecilopeptin, a new cathepsin S inhibitor produced by Paecilomyces carneus. Biosci. Biotechnol. Biochem. 2002, 66, 2444-2448. (b) Patterson, A. W.; Wood, W. J. L.; Hornsby, M.; Lesley, S.; Spraggon, G. and Ellman, J. A. Identification of selective, nonpeptidic nitrile inhibitors of cathepsin S using the substrate activity screening method. J. Med. Chem. 2006, 49, 6298-6307. (c) Inagaki, H.; Tsuruoka, H.; Hornsby, M.; Lesley, S. A.; Spraggon, G. and Ellman J. A. Characterization and optimization of selective, nonpeptidic inhibitors of Cathepsin S with an unprecedented binding mode. J. Med. Chem. 2007, 50, 2693-2699.
94. (a) Ward, Y. D.; Thomson, D. S.; Frye, L. L.; Cywin, C. L.; Morwick, T.; Emmanuel, M. J.; Zindell. R.; McNeil, D.; Bekkali, Y.; Girardot, M.; Hrapchak, M.; DeTuri, M.; Crane, K.; White, D.; Pav, S.; Wang, Y.; Hao, M.; Grygon, C. A.; Labadia, M. E.; Freeman, D. M.; Davidson, W.; Hopkins, J. L.; Brown, M. L. and Spero, D. M. Design and synthesis of dipeptide nitriles as reversible and potent cathepsin S inhibitors. J. Med. Chem. 2002, 45, 5471-5482. (b) Bakkali, Y.; Thomson, D. S.; Betageri, R.; Emmanuel, M. J.; Hao, M.; Hickey, E.; Liu, W.; Patel, U.; Ward, Y. D.; Young, E. R. R.; Nelson, R.; Kukulka, A.; Brown, M. L.; Crane, K.; White, D.; Freeman, D. M.; Labadia, M. E.; Wildeson, J. and Spero, D. M. Identification of a novel class of succinyl-nitrile-based Cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 2465-2469. (c) Irie, O.; Kosaka, T.; Ehara, T.; Yokokawa, T.; Hirao, H.; Iwasaki, A.; Sasaki, J.; Teno, N.; Hitomi, Y.; Iwasaki, G.; Fukaua, H.; Nonomura, K.; Tanaba, K.; Koizumi, S.; Uchiyama, N.; Bevan, S. J.; Malcangio, M.; Gentry, C.; Fox, A. J.; Yaqoob, M.; Culshaw, A. J. and Hallett, A. Discovery of orally bioavailable cathepsin S inhibitors for the reversal of neuropathic pain. J. Med. Chem. 2008, 51, 5502-5505. (d) Löser, R.; Schilling, K.; Dimmig, E. and Gütschow M. Interaction of papain-like cysteine proteases with dipeptide-derived nitriles. J. Med. Chem. 2005, 48, 7688-7707. (e) Löser, R.; Frizler, M.; Schilling, K. and Gütschow M. Azadipeptide nitriles: highly potent and proteolytically stable inhibitors of papain-like cysteine proteases. Angew. Chem. Int. Ed. 2008, 47, 4331-4334.
95. (a) Walker, B.; Lynas, J. F.; Meighan, M. A. and Brömme, D. Evaluation of dipeptide a-keto-b-aldehydes as new inhibitors of cathepsin S. Biochem. Biophys. Res. Commun. 2000, 275, 401-405. (b) Barrett, D. G.; Boncek, V. M.; Catalano, J. G.; Deaton, D. N.; Hassell, A. M.; Jurgensen, C. H.; Long, S. T.; McFadyen, R. B.; Miller, A. B.; Miler, L. R.; Payne, J. A.; Ray, J. A.; Samano, V.; Shewchuk, L. M.; Tavares, F. X.; Wells-Knecht, K. J.; Willard, Jr., D. H.; Wright, L. L. and Zhou, H. Q. P2–P3 conformationally constrained ketoamide-based inhibitors of cathepsin K. Bioorg. Med. Chem. Lett. 2005, 15, 3540-3546.
96. (a) Graupe, M.; Li, J.; Link, J. O.; Zipfel, S.; Timm. A. P. and Aldous, D. J. Novel compounds and compositions as Cathepsin inhibitors. WO02098850, 2002. (b) Marquis, R. W.; Ru, Y.; Zeng, J.; Trout, R. E. L.; LoCastro, S. M.; Gribble, A. D.; Witherington, J.; Fenwick, A. E.; Garnier, B.; Tomaszek, T.; Tew, D.; Hemling, M. E.; Quinn, C. J.; Smith, W. W.; Zhao, B.; McQueney, M. S.; Janson, C. A.; D’Alessio, K. and Veber, D. F. Cyclic ketone inhibitors of the cysteine protease cathepsin K. J. Med. Chem. 2001, 44, 725-736. (c) Stroup, G. B.; Lark, M. W.; Veber, D. F.; Bhattacharyya, A.; Blake, S.; Dare, L. C.; Erhard, K. F.; Hoffman, S. J.; James, I. E.; Marquis, R. W.; Ru, Y.; Vasko-Moser, J. A.; Smith, B. R.; Tomaszek, T. and Gowen, M. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J. Bone. Miner. Res. 2001, 16, 1739-1746.
97. (a) Zhou, N. E.; Guo, D.; Kaleta, J.; Purisima, E.; Menard, R.; Micetich, R. G. and Singh, R. Design and synthesis of 6-substituted amino-4-oxa-1-azabicyclo[3,2,0]heptan-7-one derivatives as cysteine proteases inhibitors. Bioorg. Med. Chem. Lett. 2002, 12, 3413-3415. (b) Zhou, N. E.; Kaleta, J.; Purisima, E.; Menard, R.; Micetich, R. G. and Singh, R. 6-acylamino-penam derivatives: synthesis and inhibition of cathepsins B, L, K, and S. Bioorg. Med. Chem. Lett. 2002, 12, 3417-3419.
98. (a) Thurmond, R. L.; Beavers, M. P.; Cai, H.; Meduma, S. P.; Gustin, D. J.; Sun, S.; Almond, H. J.; Karlsson, L. and Edwards, J. P. Nonpeptidic, noncovalent inhibitors of the cysteine protease cathepsin S. J. Med. Chem. 2004, 47, 4799-4801. (b) Gustin, D. J.; Sehon, C. A.; Wei, J.; Cai, H.; Meduna, S. P.; Khatuya, H.; Sun, S.; Gu, Y.; Jiang, W.; Thurmond, R. L.; Karlsson, L. and Edwards, J. P. Discovery and SAR studies of a novel series of noncovalent cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 1687-1691. (c) Grice, C. A.; Tays, K.; Khatuya, H.; Gustin, D. J.; Butler, C. R.; Wei, J.; Sehon, C. A.; Sun, S.; Gu, Y.; Jiang, W.; Thurmond, R. L.; Karlsson, L. and Edwards, J. P. The SAR of 4-substituted (6,6-bicyclic) piperidine cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 2209-2212. (d) Wei, J.; Pio, B. A.; Cai, H.; Meduna, S. P.; Sun, S.; Gu, Y.; Jiang, W.; Thurmond, R. L.; Karlsson, L. and Edward J. P. Pyrazole-based cathepsin S inhibitors with improved cellular potency. Bioorg. Med. Chem. Lett. 2007, 17, 5525-5528.
99. (a) Liu, H.; Tully, D. C.; Epple, R.; Bursulaya, B.; Li, J.; Harris, J. L.; Williams, J. A.; Russo, R.; Tumanut, C.; Roberts, M. J.; Alper, P. B.; He, Y. and Karanewsky, D. S. Design and synthesis of arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 1. Bioorg. Med. Chem. Lett. 2006, 15, 4979-4984. (b) Alper, P. B.; Liu, H.; Chatterjee, A. K.; Nguyen, K. T.; Tully, D. C.; Tumanut, C.; Li, J.; Harris, J. L.; Tuntland, T.; Chang, J.; Gordon, P.; Hollenbeck, T. and Karanewsky, D. S. Arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 2: Optimization of P1 and N-aryl. Bioorg. Med. Chem. Lett. 2005, 16, 1486-1490. (c) Tully, D. C.; Liu, H.; Alper, P. B.; Chatterjee, A. K.; Epple, R.; Roberts, M. J.; Willams, J. A.; Nguyen, K. T.; Woodmansee, D. H.; Tumanut, C.; Li, J.; Spraggon, G.; Chang, J.; Tuntland, T.; Harris, J. L. and Karanewsky, D. S. Synthesis and evaluation of arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 3: Heterocyclic P3. Bioorg. Med. Chem. Lett. 2006, 16, 1975-1980. (d) Tully, D. C.; Liu, H.; Chatterjee, A. K.; Alper, P. B.; Willams, J. A.; Roberts, M. J.; Mutnick, D.; Woodmansee, D. H.; Hollenbeck, T.; Gordon, P.; Chang, J.; Tuntland, T.; Tumanut, C.; Li, J.; Harris, J. L. and Karanewsky, D. S. Arylaminoethyl carbamates as a novel series of potent and selective cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 5107-5111. (e) Tully, D. C.; Liu, H.; Chatterjee, A. K.; Alper, P. B. ; Epple, R.; Willams, J. A.; Roberts, M. J.; Woodmansee, D. H.; Masick, B. T.; Tumanut, C.; Li, J.; Spraggon, G.; Hornsby, M.; Chang, J.; Tuntland, T.; Hollenbeck, T.; Gordon, P.; Harris, J. L. and Karanewsky, D. S. Synthesis and SAR of arylaminoethyl amides as noncovalent inhibitors of cathepsin S: P3 cyclic ethers. Bioorg. Med. Chem. Lett. 2006, 16, 5112-5117. (f) Chatterjee, A. K.; Liu, H.; Tully, D. C.; Guo, J.; Epple, R.; Russo, R.; Williams J.; Roberts, M.; Tuntland, T.; Chang, J.; Gordon, P.; Hollenbeck, T.; Tumanut, C.; Li, J. and Harris, J. L. Synthesis and SAR of succinamide peptidomimetic inhibitors of cathepsin S. Bioorg. Med. Chem. Lett. 2007, 17, 2899-2903.
100. Palmer, J. T.; Rasnick, D. and Klaus, J. L. Reversible protease inhibitors. WO9630353A1, 1996. (b) Gu, Y.; Karlsson, L.; Sun, S. and Thurmond, R. A method for treating allergies. WO0220002A2, 2002.
101. Wei, Z.-Y. and Knaus, E. E. A short efficient synthesis of (S)-4-amino-5-hexenoic acid [(S)-Vigabatrin]. J. Org. Chem. 1993, 58, 1586-1588.
102. Greene, T. W. and Wuts, P. G. M. Protective Groups in Organic Synthesis, Third Edition; John Wiley & Sons: New York, 1999.
103. Truchot, C.; Wang, Q and Sasaki, N. A. A new diastereoselective synthetic approach to the enantiopure peptidomimetic scaffold 2-oxo-1-azabicyclo[4.4.0]decane. Eur. J. Org. Chem. 2005, 1765-1776.
104. Adam, J.; Behnke, M.; Chen, S.; Cruickshank, A. A.; Dick, L. R.; Grenier, L.; Klunder, J. M.; Ma, Y.-T.; Plamondon, L. and Stein, R. L. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett. 1998, 8, 333-338.
105. Rich, D. H.; Sun, E. T. and Boparai, A. S. Synthesis of (3S, 4S)-4-amino-3-hydroxy-6-methylheptanoic acid derivatives. Analysis of diastereomeric purity. J. Org. Chem. 1978, 43, 3624-3626.
106. Zhao, K.; Lim, D. S.; Funaki, T. and Welch, J. T. Inhibition of dipeptidyl peptidase IV (DPP IV) by 2-(2- amino-1-fluoro- propylidene)-cyclopentanecarbonitrile, a fluoroolefin containing peptidomimetic. Bioorg. Med. Chem. 2003, 11, 207-215.
107. Falgueyret, J.-P.; Desmarais, S.; Oballa, R.; Black, W. C.; Cromlish, W.; Khougaz, K.; Lamontagne, S.; Massé, F.; Riendeau, D.; Toulmond, S. and Percival, M. D. Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J. Med. Chem. 2005, 48, 7535-7543.
108. (a) Susa, M.; Luong-Nguyen, N.-H.; Cappellen, D.; Zamurovic, N. and Gamse, R. Human primary osteoclasts: in vitro generation and applications as pharmacological and clinical assay. J. Transl. Med. 2004, 2, 6-17.
109. de Nooijer, R.; Bot, I.; von der Thüsen, J. H.; Leeuwenburgh, M. A.; Overkleeft, H. S.; Kraaijeveld, A. O.; Dorland, R.; van Santbrink, P. J.; van Heiningen, S. H.; Westra, M. M.; Kovanen, P. T.; Jukema, J. W.; van der Wall, E. E.; van Berkel, Th. J. C.; Shi, G. P. and Biessen, E. A. L. Leukocyte Cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 188-194.
110. 張純鳳,碩士論文,國立清華大學,2009年。
111. Perrin, D. D.; Perrin, D. R. Purification of Laboratory Chemical; 4th. Ed.; Pergamon Press: New York, 1996.