簡易檢索 / 詳目顯示

研究生: 黃弘達
Huang, Hong-Da
論文名稱: Crystallization and characterization studies of avian reovirus nonstructural protein μNS and σNS
對家禽里奧病毒的非結構性蛋白質μNS和σNS結晶化和特性之研究
指導教授: 殷献生
Yin, Hsien-Sheng
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 52
中文關鍵詞: 家禽里奧病毒非結構性蛋白質蛋白質結晶
外文關鍵詞: avian reovirus, crystalization, sigmaNS, MuNS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • μNS and σNS belong to non-structctural proteins in avian reovirus. It has been reported that they are an important roles in replication of geneome or packaging of avian virion and are essential to consist of viroplasm. In avian reovirus infected cell, μNS is able to recruit proteins and makes up the viroplasm. σNS binds to single stranded nucleotides and is led into the viroplasm. In this study, we attempted to study structures and characters of these proteins in order to understand the viroplasm. First, we used E. coli expressed system to acquire large protein. Size exclusion chromatography proved that σNS forms heterooligomer with single stranded nucleotides and homooligomer made up by 2-3 units. Trp325 and Trp349 in σNS were assumed to affect ssDNA binding activeity by intrinsic fluorescence quenching assay. In addition, the results indicated that μNS possesses protease activity that enabled the protein to hydrolyze gelatin. The secondary structure of σNS shows mixture of α-helix and β-strand, with small changes induced by ssDNA and is influenced by low- pH value and high temperature. μNS likes also an α/ β secondary structure protein. In aspect of crystallization, we acquired at least three crystal growth conditions of σNS. Our results might be useful to realize the ARV viroplasm that is significantly relation with μNS and σNS in biological structure.


    μNS 和σNS二個屬於家禽里奧病毒非結構性蛋白質。在很多文獻指出這二個蛋白質在家禽里奧病毒的基因體上的複製或是病毒顆粒的組裝上扮演著重要的角色。同時,也是病毒形成包涵體不可缺少的分子。μNS 有能力去募集組裝病毒顆粒的蛋白質和構成包涵體。而σNS具有單股核苷酸結合的活性,並將單股的單股核苷酸帶入包涵體中。在這個硏究中,我們為了更了解包涵體,因此針對與包涵體相關的μNS 和σNS在結構性和特性上進行硏究。首先,我們以大腸桿菌表現蛋白質系統取得大量的蛋白質。以體積排除層析法証明σNS與單股核苷酸形成異源性的聚合物,而σNS也會由二到三個σNS形成同源性的聚合物。在內源性的螢光相消實驗中,推估σNS中胺基酸序列的325和349色胺酸與單股核苷酸結合有明顯的關係。此外,μNS被証明像蛋白酶一樣可以水解明膠。在蛋白質的二級結構上,σNS呈現出α-螺旋和β-摺板混合的結構。當配位體結合或環境改變時,σNS的二級結構都會受影響。而μNS的二級結構也呈現出α-螺旋和β-摺板混合。最後,在蛋白質結晶方面,我們也獲得至少三個σNS結晶的可能條件。因此,我們研究的結果可能有助於更了解家禽里奧病毒病包涵體的結構特徵。

    中文摘要......................................................................................................................Ⅰ Abstract……………………………………………………………………………....Ⅱ 謝誌..............................................................................................................................Ⅲ Content……………………………………………………………………………….Ⅳ List of figures………………………………………………………………………...Ⅵ List of tables………………………………………………………………………….Ⅶ 1. Introduction…………………………………………………………………………1 1.1 Avian reovirus………………………………………………………………...1 1.2 Reoviroplasm…………………………………………………………………3 1.3 Avian reovirus nonstructural protein μNS…………………………………….3 1.4 Avian reovirus nonstructural protein σNS…………………………………….4 2. Experimental motive………………………………………………………………..5 3. Materials and Methods……………………………………………………………...6 3.1 Reverse-transcription polymerase chain reaction (RT-PCR)…………………6 3.2 Digestion of DNA…………………………………………………………….6 3.3 Clean-up of DNA/ extraction of DNA………………………………………..7 3.4 Ligation……………………………………………………………………….7 3.5 Preparation of competent cells………………………………………………..7 3.6 Transformation………………………………………………………………..8 3.7 Mini preparation of plasmids…………………………………………………8 3.8 DNA sequencing……………………………………………………………...9 3.9 Protein expression…………………………………………………………….9 3.10 Protein purification…………………………………………………………..9 3.11 Dialysis and concentration of protein………………………………………10 3.12 SDS-PAG and Western blotting……………………………………………10 3.13 Size exclusion chromatography…………………………………………….11 3.14 Chemical crossing-linking………………………………………………….11 3.15 Gelatin zymography………………………………………………………..11 3.16 Fluorescence measurement…………………………………………………12 3.17 Circular dichroism analysis………………………………………………...12 3.18 Crystallization of protein…………………………………………………...13 4. Results……………………………………………………………………………..14 3.1 Identification M3 and S4 cDNA………………………………………………14 3.2 Expression and purification of rμNS and rσNS fusion proteins……………….14 3.3 In vitro rσNS forms heterooligomer and homooligomer……………………...14 3.4 μNS likes cis-cleavage protease……………………………………………….15 3.5 Single-stranded DNA binding to RNA-free rσNS by fluorescence assay……..16 3.6 Secondary structure of rμNS and rσNS determination………………………...16 3.7 Stability of rσNS……………………………………………………………….17 3.7 Crystallization of rσNS………………………………………………………..18 5. Discussion…………………………………………………………………………20 Figures………………………………………………………………………………..23 Tables…………………………………………………………………………………47 References……………………………………………………………………………49

    Benavente, J., Mart´ınez -Costas, J., 2006. Early steps in avian reovirus morphogensis. Roy, P. (Ed) Reovirus: entry, assembly, and morphogenesis. Springer, pp, 68–85.
    Bodelon, G., Labrada, L., Mart´ınez-Costas, J., Benavente, J., 2001. The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses one structural and two nonstructural proteins in infected cells. Virology 290, 181–191.
    Bokaie, S., Shojadoost, B., Pourbakhsh, S. A., Pourseyyed, S. M. Sharifi, L., 2008. Seroprevalence survey on reovirus infection of broiler chickens in Tehran province. Iranian journal of veterinary research. 9,181–183.
    Bryson, K., McGuffin, L.J., Marsden, R.L., Ward, J.J., Sodhi, J.S., Jones D.T., 2005. Protein structure prediction servers at University College London. Nucl. Acids Res. 33(Web Server issue): W36-38.
    Chiu, C.J., Lee, L.H., 1997. Cloning and nucleotide sequencing of the S4 genome segment of avian reovirus S1133. Arch. Virol. 142, 2515-2520.
    Coombs, K. M., 2006. Reovirus Structure and Morphogenesis. Roy, P. (Ed) Reovirus: entry, assembly, and morphogenesis. Springer, pp, 117–167.
    Duncan, R., 1996. The low pH-dependent entry of avian reovirus is accompanied by two specific cleavages of the major outer capsid protein μ2C. Virology 219, 179–189.
    Fan, C., Fang, Q., 2009. Functional analyses of mammalian reovirus nonstructural potein Μns. Virologica Sinica. 24, 1–8.
    Grande, A., Costas, C., Benavente, J., 2002. Subunit composition and conformational stability of the oligomeric form of the avian reovirus cell-attachment protein σC. J. Gen. Virol. 83, 131–139.
    Grande, A., Rodriguez, E., Costas, C., Everitt, E., Benavente, J., 2000. Oligomerization and cell-binding properties of the avian reovirus cell-attachment protein sigmaC. Virology 274, 367–377.
    Guardado Calvo, P., Fox, G.C., Hermo Parrado, L., Llamas-Saiz, A.L., Costas, C., Martı´nez-Costas, J., Benavente, J., van Raaij, M.J.. 2005. Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. J. Mol. Biol. 354, 137–149.
    Hermo-Parrado, X. L., Guardado-Calvo, P., Llamas-Saiz, A.L., Fox, G.C., Vazquez-Iglesias, L., Martínez-Costas, J., Benavente, J., van Raaij, M.J., 2007. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA. Acta Cryst. F63, 426–429.
    Hsiao, J., Martinez-Costas, J., Benavente, J., Vakharia, V.N., 2002. Cloning, expression, and characterization of avian reovirus guanylyltransferase. Virology 196, 288–299.
    Huang, P.H., Li, Y.J., Su, Y.P., Lee, L.H., Liu, H.J., 2005. Epitope mapping and functional analysis of sigma A and sigma NS proteins of avian reovirus. Virology 332, 584–595.
    Kobayashi, T., Ooms, L.S., Chappell, J.D., Dermody, T.S., 2009. Identificaiton of functional domains in reovirus replication protein μNS and μ2. J. Virol. 83, 2892–2906..
    Lupas, A., Van Dyke, M., and Stock, J. (1991) Predicting Coled Coils from Protein Sequences. Science 252:1162-1164.
    Mertens, P., 2004. The dsRNA viruses. Virus Res. 101, 3–13.
    Mertens P.P.C., Arella M., Attoui H., Belloncik S., Bergoin M., Boccardo G., Booth T.F., Chiu W., Diprose J.M., Duncan R., Estes M.K., Gorziglia M., Gouet P., Gould A.R., Grimes J.M., Hewat E., Hill C., Holmes I.H., Hoshino Y., Joklik W.K., Knowles N., Lo’ pez Ferber M.L., Malby R., Marzachi C., McCrae M.A., Milne R.G. Nibert M., Nunn M., Omura T., Prasad B.V.V., Pritchard I., Samal S.K., Schoehn G., Shikata E., Stoltz D.B., Stuart D.I., Suzuki N., Upadhyaya N., Uyeda I., Waterhouse P., Williams C.F., Winton J.R., and Zhou H.Z., 2000. Family Reoviridae In: Van Regenmortel M.H.V., Fauquet C.M., Bishop D.H.L., Calisher C.H., Carsten E.B., Estes M.K., Lemon S.M., Maniloff J., Mayo M.A., McGeoch D.J., Pringle C.R., and Wickner R.B. (Eds.), Virus taxonomy. Seventh report of the international committee for the taxonomy of viruses. Academic Press, pp. 395–480.
    Nibert, M.L., Schiff, L.A., 2001. Reoviruses and their replication. In: Knipe, D.M., Hooley, P.M. (Eds.), Fields Virology, fourth ed. Lippincott Willams & Wilkins, Philadelphia, PA, pp. 1679–1728.
    Novoa, R. R., Calderita, G., Arranz, R., Fontana, J., Granzow, H. Risco, C., 2006. Virus factories : associations of cell organelles for viral replication and morphogenesis. Biol. Cell. 97, 147–172
    Rosenberger, J.K., Sterner, F.J., Botts, S., Lee, K.P., Margolin, A., 1989. In vitro and in vivo characterization of avian reoviruses. I. Pathogenicity and antigenic relatedness of several avian reovirus isolates. Avian Dis. 33, 535–544.
    Schnitzer, T.J., Ramos, T., Gouvea, V., 1982. Avian Reovirus Polypeptides: Analysis of Intracellular Virus-Specified Products, Virions, Top Component, and Cores. J. Virol. 43, 1006–1014.
    Shmulevitz, M., Duncan, R., 2000. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J. 19, 902–912.
    Spandidos, D.A., Graham, A.F., 1976. Physical and chemical characterization of an avian reovirus. J. Virol. 19, 968–976.
    Su, Y.P., Shien, J.H., Liu H.J., Yin, H.S., Lee, L.H., 2007. Avian reovirus core protein μA expressed in Escherichia coli possesses both NTPase and RTPase activities. J. Gen. Virol. 88, 1797–1805.
    Tran, A.T., Xu, W., Racine, T., Silaghi, A., Coombs, K.M., 2008. Assignment of avian reovirus temperature-sensitive mutant recombination groups E, F, and G to genome segments. Virology 375, 504–513.
    Taraporewala, Z.F., Patton, J.T., 2004. Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae. Virus Res. 101, 57–66.
    Tour´ıs-Otero, F., Cortez-San Mart´ın, M., Mart´ınez-Costas, J., Benavente, J., 2004a. Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of σNS and λA to μNS inclusions. J. Mol. Biol. 341, 361–374.
    Tour´ıs-Otero, F., Mart´ınez-Costas, J., Vakharia, V.N., Benavente, J., 2004b. Avian reovirus nonstructural protein μNS forms viroplasm-like inclusions and recruits σNS to these structures. Virology 319, 94–106.
    Tour´ıs-Otero, F., Mart´ınez-Costas, J., Vakharia, V.N., Benavente, J., 2005. Characterization of the nucleic acid-binding activity of the avian reovirus nonstructural protein σNS. J. Gen. Virol. 86, 1159–1169.
    van Loon, A., Kosman, W., van Zuilekom, H. I., van Riet, S., Frenken, M., Schijns, V. E., 2003. The contribution of humoral immunity to the control of avian reoviral infection in chickens after vaccination with live reovirus vaccine (strain 2177) at an early age. Avian Pathol. 32, 15–23.
    Varela, R., Benavente, J., 1994. Protein coding assignment of avian reovirus strain S1133. J. Virol. 68, 6775–6777.
    Varela, R., Mart´ınez-Costas, J., Mallo, M., Benavente, J., 1996. Intracellular posttranslational modifications of S1133 avian reovirus proteins. J. Virol. 70, 2974–2981.
    Yin, H.S., Lee, L.H., 2000. Characterization of avian reovirus non structural protein sigmaNS synthesized in Escherichia coli. Virus Res. 67, 1–9.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE