研究生: |
葉冠蠲 Kuan-Chuan Yeh |
---|---|
論文名稱: |
清華大學水池式反應器應用於硼中子捕獲滑膜切除術劑量評估之初期研究 Initial Study on the Dose Evaluation of Boron Neutron Capture Synovectomy Using THOR Epithermal Neutron Beam |
指導教授: |
莊克士
Keh-Shih Chuang 薛燕婉 Yen-Wan Hsueh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 關節炎 、類風濕性關節炎 、滑膜切除術 、硼中子捕獲 、清大水池式反應器 |
外文關鍵詞: | THOR, arthritis, synovectomy, BNCS, BNCT, boron neutron capture synovectomy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於關節炎的普遍發生,而多元化的治療選擇有助於提升關節炎疾病的控制並改善患者生活品質,故本研究將模擬利用清華大學水池式反應器進行硼中子捕獲滑膜切除術(Boron neutron capture synovectomy, BNCS)的劑量評估與治療效益的最佳化測試,建立反應器應用於BNCS最佳治療條件的雛型,期能在未來提供臨床治療關節炎的另一種選擇。
本研究利用蒙地卡羅粒子遷移計算程式MCNP5進行膝關節與指關節模型劑量模擬。模型仿照人體關節建構,根據ICRU第46號報告的人體組織組成建構模擬材質組成,由內而外依序為骨頭、軟骨、滑液、滑膜、關節囊、肌肉以及皮膚,其餘細部構造假設與軟組織組成相近,其中由於發炎組織區域血流量增加,故滑膜以血液組成代表之;採用清華大學水池式反應器(Tsing Hua Opening-pool Reactor, THOR)最佳化射束設計射束能譜進行劑量模擬,藉由治療準直器縮減治療照野範圍、於關節模型周圍加上反射體調控,建立以THOR進行BNCS治療時的最佳治療調控參數。經由整體治療時間、最大皮膚總劑量值與滑膜/骨頭治療比等治療效益參考指標(FOM)顯示,利用THOR超熱中子射束在進行不同尺寸關節之BNCS時,所需要的最佳治療調控條件亦不同。但綜觀而言,採用相對雙射束照射、加上適當材質之反射體(PMMA或石墨),並將治療部位置於貼近治療準直器射源出口面能有效縮短總治療時間,進而降低整體皮膚、骨頭與軟骨所接受的劑量。本研究顯示THOR超熱中子射束亦適用於BNCS的治療,且品質與整體治療效益比加速器產生之熱中子束更為理想。
Arthritis is one of the most common epidemic diseases in the world. Multiple treatment
approaches will provide appropriate disease control rate and improve the quality of patient’s
life. The goal of our study is to evaluate the feasibility of Boron Neutron Capture
Synovectomy by Tsing Hua Opening-pool Reactor. Furthermore, we established the optimal
BNCS treatment parameters, such as putting the reflectors around the inflamed joint and
using the patient’s treatment collimator to reduce the beam’s field size. Using the THOR
epithermal beam we expect that BNCS could provide an alternative treatment of arthritis in
Taiwan.
In this study, we use the MCNP5 to model neutron beam interaction with knee and
finger phantom. The phantom was established according to the structure of human joints. The
composition of tissues was based on ICRU Report No.46., including bone, articular cartilage,
synovial fluid, synovium, joint capsule, muscle and skin. Since the blood flow is increased in
inflamed synovium, we assumed it is similar to the blood tissue.
The Figure of merits (FOMs) such as total treatment time, total maximum skin dose and
synovium to bone treatment ratio were used to evaluate the effect of the treatment parameters.
Treatment parameters vary with joint size. The optimum treatment condition for different
joint size can be achieved by using the opposed parallel beam, placing the inflamed joint near
the source, and adding suitable reflectors.
It is found that the quality and overall clinical efficacy of THOR epithermal beam for
BNCS is more suitable and better than the beam produced by accelerator.
行政院衛生署統計室, http://www.doh.gov.tw/statistic/data/全民健保主要疾病就診率統計/2003/2003.htm
林宗逸, “清華大學水池式反應器BNCT治療計畫程式THORplan之開發與驗證,” 國立清華大學工程與系統科學系碩士論文,2004
林宗毅, “「硼捉中子治癌」治療計畫程式之發展,” 國立清華大學工程與系統科學系碩士論文,2003
黃泰庭, “清華水池式反應器改建為硼中子捕獲治療專用核反應器之超熱中子束最終設計分析,” 國立清華大學工程與系統科學系碩士論文,2003
A. H. W. Nias, “An introduction to radiology,” Willey, New York, 1990.
D. P. Gierga, J. C. Yanch., “Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy,” Med. Phys. 2000, 27 (1), 203-214.33.
E. C Rodriguez-Merchan., J. D. Wiedel., “General principles and indications of synoviorthesis (medical synovectomy) in haemophilia,” Haemophilia 2001; 7: 6-10.
E. Kresnik, P. Mikosch, et al., “Clinical outcome of radiosynoviorthesis: a meta-analysis including 2190 treated joints,” Nul. Med. Com 2002; 23: 683-688.
Ettore Pelosi, Riccardo Pellerito et al., “Characterization of the ideal candidate for knee radiosynoviorthesis treatment in patients with rheumatoid arthritis,” Nul. Med. Com 2004; 25: 603-608.
F. Fernandez-Palazzi, Venezuela et al., “Radiosynoviorthesis for hemophilic synovitis,” Haemophilia (2000), 6, (Suppl. 2), 29-32.
Frank H, Attix, “Introduction to radiological physics and radiation dosimetry,” John Wiley & Sons, Inc., 1986.
Howerton, R. J. 1986a., “Calculated Neutron KERMA Factors Based on the LLNL ENDL Data Files,” Vol. 27, UCRL-50400, Lawrence Livermore National Laboratory, Livermore, CA
Howerton, R. J. 1986b., “Calculated Photon KERMA Factors Based on the LLNL ENDL Data Files,” Vol. 27, UCRL-50400, Lawrence Livermore National Laboratory, Livermore, CA
H. R. Vega-Carrillo, E. M. Acuna, “Neutron source for Neutron Capture Synovectomy,” American Institute of Physics 2002, 177-184.
ICRU Report 46, “Photon, Electron, Proton and Neutron Interaction Data for Body Tissues,” International Commission on Radiation units and Measurements, Appendix A.
James E. Turner, “Atoms, Radiation, and Radiation Protection,” John Wiley & Sons, INC. Ch10, 10.5
J. C. Yanch, X-L Zhou, and G.L. Brownell, “A Monte Carlo investigation of the dosimetric properties of monogenetic neutron beams for neutron capture therapy,” Radiation research 1991, 126, 1-20.
J. C. Yanch, S. Shortkroff, et al., “Boron neutron capture synovectomy: Treatment of rheumatoid arthritis based on the 10B(n,α)7Li nuclear reaction,” Med. Phys. 1999, 26 (3), 364-375.
J.M. Verbeke, A. Chen, J. Vujic, and K.N. Leung, “Prediction of In-Phantom Neutron Beam Characteristics Using In-Air Figure-of-Merit for BNCS,” Nucl. Technol. 131 (2), 269-276 (2000).
J.M. Verbeke, A. Chen, J. Vujic, and K.N. Leung, “Optimization of Beam-Shaping Assemblies for BNCS using the High-Energy Neutron Sources D-D and D-T,” Nucl. Technol. 134 (3), 278-293 (2001)
Maughan et al., “Elemental composition of tumors,” Medical physics, Vol. 24, No.8, August, 1997.
MCNP-A General Monte Carlo N-Particle Transport Code _version 5, MCNP manual, 2000.
M. Davis, M. Chinol, et al., “Radiopharmaceuticals for radiation synovecotomy: Evaluation of two Yttrium-90 Particulate Agents,” J. Nucl. Med., 30. 1047-1055 (1989).
Michael E., Siegel, et al., “Radiosynovectomy’s clinical applications and cost effectiveness: A review,” Semi. Nul. Med. 1997; 4: 364-371.
Pandey U, Mukherjee A, et al., “Preparation and studies with 90Y-labelled particles for use in radiation synovectomy,” Appl Radiat Isot. 2001 Oct;55(4):471-5.
Rojymon Jacob, T.Smith, et al., “Yttrium 90 synovectomy in the management of chronic knee arthritis: a single institution experience,” Rheumatol Int (2003) 23: 216-220.
R.S.Caswell, J.J.Coyne, and M.L.Randolph, ‘‘Kerma factors of elements and compounds for neutron energies below 30MeV,’’Int.J.Appl.Radiat.Isot.33,1227–1262, 1982.
Sonya Shortkroff, Emanuela Binello, J.C. Yanch, et al., “Dose response of AIA rabbit stifle joint to boron neutron capture synovectomy,” Nul. Med. Bio. 2004; 31(5): 663-670.
S. Takahashi, M. Sugimoto et al., “Long-lasting tolerance of articular cartilage after experimental intraoperative radiation in rabbits,” Clin. Orthop. Relat. Res. 275, 300-305, 1992.
Susan M. White, Kathryn D. Held, et al., “Biological dosimetry for epithermal neutron beams,” Radiation research 2001, 155, pp. 778-784.
T.L. Whipple, M.J. Duval, “Arthroscopy and synovectomy,” In: S. Ruddy, E.D. Harris, Jr and C.B. Sledge, Editors, Kelly’s textbook of rheumatology (6th ed.), WB Saunders, Philadelphia, 2001, pp.685-693
Y-W H. Liu, T.T. Huang, et al., “Renovation of Epithermal Neutron Beam for BNCT at THOR,” Appl. Radiat. Isot, Vol. 61 (5), 2004, pp. 1039-1043.