簡易檢索 / 詳目顯示

研究生: 劉威毅
Liu, Wei-Yi
論文名稱: 利用CRISPR/Cas9系統來探討剔除KDM4C對前列腺癌細胞之代謝、移動與侵襲之影響
Investigate the effect of KDM4C knockout on cancer metabolism, migration, and invasion of prostate cancer cells using CRISPR/Cas9 system.
指導教授: 褚志斌
Chuu, Chih-Pin
汪宏達
Wang, Horng-Dar
口試委員: 張中和
Chang, Chung-Ho
張凱雄
Chang, Kai-Hsiung
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 66
中文關鍵詞: 攝護腺癌KDM4CCRISPRCas9前列腺癌
外文關鍵詞: KDM4C, Prostate, cancer, CRISPR, Cas9
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 異常表觀遺傳的組蛋白修飾常伴隨著癌症的進展,KDM4C具有特異的催化活性能將組蛋白H3上的Lysine 9 與Lysine 36 的tri-methylation轉化為di-methylation。先前的研究已經闡述了KDM4C在復發的CRPC前列腺癌中表現較高。然而在前列腺癌細胞轉移與代謝中,KDM4C的角色仍然是未知的。在這項研究中,我們使用CRISPR技術將KDM4C在前列腺癌細胞中進行剔除。我們使用西方墨點微陣列平台來分析受到CRISPR剔除KDM4C的前列腺癌細胞其影響的下游信號傳導途徑。透過西方墨點微陣列揭示在剔除KDM4C後減少了葡萄糖代謝、線粒體代謝、能量代謝、PI3K / AKT信號通路與上皮間質轉化(EMT)中的許多蛋白質表現。我們觀察到剔除KDM4C抑制了前列腺癌細胞的遷移和侵襲能力,也降低了Snail, β-catenin, phospho-β-Catenin (Ser675), and PKA C-α, E-cadherin 的蛋白質表現。 我們使用Seahorse Bioscience XF分析儀證實剔除KDM4C後減少了前列腺癌細胞中的糖酵解、粒線體的基礎呼吸、ATP產量與粒線體的最大呼吸能力。在剔除KDM4C後,c-Myc, PKM2, LDHA, PDH, and PGC-1α的蛋白質表現也都是下降的。我們透過KDM4C會結合在c-Myc的啟動子區域發現KDM4C會直接調控c-Myc的基因轉錄。剔除KDM4C後發現乳酸分泌較低以及MMP2的活性降低。我們的結果表明在前列腺癌細胞中剔除KDM4C可能透過減少EMT、MMPs的活性、c-Myc以及干擾代謝減少癌細胞轉移。KDM4C是前列腺癌新的致癌基因,也具有潛力作為PCa的治療標的。


    KDM4C, a member of lysine demethylase KDM4, converts tri-methylation to di-methylation of histone H3 at Lysine 9 (H3K9) and H3K36. Previous studies indicated that KDM4C expression level is higher in castration-resistant prostate cancer (CRPC). However, the role of KDM4C in prostate cancer (PCa) metastasis and metabolism is not well understood. In this study, we used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to knockout KDM4C in C4-2B PCa cells. Micro-Western Array (MWA) platform was used to determine signaling proteins affected by CRISPR knockout of KDM4C in C4-2B cells. MWA revealed that knockout of KDM4C reduced proteins regulating glucose metabolism, mitochondrial metabolism, energy metabolism, PI3K/AKT signal pathway, and epithelial-mesenchymal transition (EMT). We observed that knockout of KDM4C suppressed the migration and invasion of C4-2B cells, as well as decreased the protein expression of Snail, β-catenin, phospho-β-Catenin (Ser675), PKA C-α, and E-cadherin. Seahorse Bioscience XF Analyzer analysis revealed that knockout of KDM4C reduces the glycolysis, basal respiration, ATP production, and maximum respiration of mitochondria in C4-2B cells. The protein expression of c-Myc, PKM2, LDHA, PDH, and PGC-1α, was downregulated in KDM4C knockout C4-2B cells. We discovered that KDM4C directly regulates c-Myc transcription by binding on the promoter region of c-Myc as determined by chromosome-IP (CHIP) assay. Knockout of KDM4C decreased lactate secretion and MMP2 activity. Our result suggested that knockout of KDM4C suppresses PCa metastasis possibly through inhibition of EMT marker, decrease of MMPs activity, reduction of c-Myc, and disturbing metabolism in PCa cells. KDM4C is thus a novel oncogene and a potential therapeutic target for PCa.

    Abstract i 中文摘要 iii 誌謝 iv Content v 1. Introduction 1 Prostate Cancer 1 KDM4C 2 Cancer metabolism 4 Warburg effect 4 Metabolic Reprogramming 4 c-Myc 5 Cancer metastasis 6 Epithelial-mesenchymal Transition 6 Matrix metalloproteinases 7 2. Experimental aim and procedure 8 3. Materials and Methods 9 Cell culture 9 Trans-well migration assay 9 Trans-well invasion assay 10 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 10 Micro-Western Array 12 Gelatin Zymography assay 13 Proliferation Assay 14 Lactate Accumulation 14 Pyruvate Abundance 15 Western Blotting Assay 15 CRISPR/Cas9 17 Oxygen Consumption Rates (OCR) and Extracellular Acidification Rates (ECAR) assay 18 Chromatin Immunoprecipitation (ChIP) 19 3D CELL EXPLORER 22 Data analysis 22 4. Results 23 4-1 KDM4C protein expression level is higher in prostate cancer cells as compared to normal prostatic epithelial cells. 23 4-2 Knockout of KDM4C suppresses the migration and invasion of C4-2B cells 24 4-3 Knockout of KDM4C affects glucose metabolism, mitochondrial metabolism, energy metabolism, PI3K/AKT signal pathway, and EMT marker proteins in PCa. 24 4-4 Both OCR and ECAR are reduced in sgKDM4C. 25 4.5 Knockout of KDM4C reduced abundance of proteins involved in glycolysis metabolism and mitochondrial metabolism in PCa. 26 4.6 KDM4C directly binds to c-Myc promoter region. 26 4.7 Knockout of KDM4C reduced lactate secretion and MMP activity, but induced pyruvate abundance. 27 5. Discussion 29 6. Figures 33 7. Appendix 48 8. References 60

    Ainscow, E.K., and Brand, M.D. (1999). Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Eur J Biochem 263, 671-685.
    Barrallo-Gimeno, A., and Nieto, M.A. (2005). The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151-3161.
    Baumann, F., Leukel, P., Doerfelt, A., Beier, C.P., Dettmer, K., Oefner, P.J., Kastenberger, M., Kreutz, M., Nickl-Jockschat, T., Bogdahn, U., et al. (2009). Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol 11, 368-380.
    Berry, W.L., and Janknecht, R. (2013). KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res 73, 2936-2942.
    Bienz, M. (2005). beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15, R64-67.
    Bonuccelli, G., Tsirigos, A., Whitaker-Menezes, D., Pavlides, S., Pestell, R.G., Chiavarina, B., Frank, P.G., Flomenberg, N., Howell, A., Martinez-Outschoorn, U.E., et al. (2010). Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9, 3506-3514.
    Brand, M.D., and Nicholls, D.G. (2011). Assessing mitochondrial dysfunction in cells. Biochem J 435, 297-312.
    Brown, G.C., Lakin-Thomas, P.L., and Brand, M.D. (1990). Control of respiration and oxidative phosphorylation in isolated rat liver cells. Eur J Biochem 192, 355-362.
    Cairns, R.A., Harris, I.S., and Mak, T.W. (2011). Regulation of cancer cell metabolism. Nat Rev Cancer 11, 85-95.
    Chambers, A.F., and Matrisian, L.M. (1997). Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89, 1260-1270.
    Choi, S.W., Gerencser, A.A., and Nicholls, D.G. (2009). Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem 109, 1179-1191.
    Chu, C.H., Wang, L.Y., Hsu, K.C., Chen, C.C., Cheng, H.H., Wang, S.M., Wu, C.M., Chen, T.J., Li, L.T., Liu, R., et al. (2014). KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J Med Chem 57, 5975-5985.
    Chuu, C.P., Kokontis, J.M., Hiipakka, R.A., Fukuchi, J., Lin, H.P., Lin, C.Y., Huo, C., and Su, L.C. (2011). Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. J Biomed Sci 18, 63.
    Cloos, P.A., Christensen, J., Agger, K., Maiolica, A., Rappsilber, J., Antal, T., Hansen, K.H., and Helin, K. (2006). The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307-311.
    Crea, F., Sun, L., Mai, A., Chiang, Y.T., Farrar, W.L., Danesi, R., and Helgason, C.D. (2012). The emerging role of histone lysine demethylases in prostate cancer. Mol Cancer 11, 52.
    Dang, C.V. (1999). c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19, 1-11.
    Dang, C.V. (2010). Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70, 859-862.
    Dang, C.V. (2012). Links between metabolism and cancer. Genes Dev 26, 877-890.
    Dang, C.V., Le, A., and Gao, P. (2009). MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15, 6479-6483.
    Dang, C.V., and Semenza, G.L. (1999). Oncogenic alterations of metabolism. Trends Biochem Sci 24, 68-72.
    Das, P.P., Shao, Z., Beyaz, S., Apostolou, E., Pinello, L., Angeles, A.L., O'Brien, K., Atsma, J.M., Fujiwara, Y., Nguyen, M., et al. (2014). Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity. Mol Cell 53, 32-48.
    David, C.J., Chen, M., Assanah, M., Canoll, P., and Manley, J.L. (2010). HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364-368.
    DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008a). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11-20.
    DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., and Thompson, C.B. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104, 19345-19350.
    Deberardinis, R.J., Sayed, N., Ditsworth, D., and Thompson, C.B. (2008b). Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18, 54-61.
    Edwards, J., Krishna, N.S., Witton, C.J., and Bartlett, J.M. (2003). Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res 9, 5271-5281.
    Egeblad, M., and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161-174.
    Eilers, M., and Eisenman, R.N. (2008). Myc's broad reach. Genes Dev 22, 2755-2766.
    Fischle, W., Wang, Y., and Allis, C.D. (2003). Histone and chromatin cross-talk. Curr Opin Cell Biol 15, 172-183.
    Ganapathy-Kanniappan, S., and Geschwind, J.F. (2013). Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 12, 152.
    Gandaglia, G., Abdollah, F., Schiffmann, J., Trudeau, V., Shariat, S.F., Kim, S.P., Perrotte, P., Montorsi, F., Briganti, A., Trinh, Q.D., et al. (2014). Distribution of metastatic sites in patients with prostate cancer: A population-based analysis. Prostate 74, 210-216.
    Gonzalez-Menendez, P., Hevia, D., Mayo, J.C., and Sainz, R.M. (2018). The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas? Int J Cancer 142, 2414-2424.
    Grad, J.M., Dai, J.L., Wu, S., and Burnstein, K.L. (1999). Multiple androgen response elements and a Myc consensus site in the androgen receptor (AR) coding region are involved in androgen-mediated up-regulation of AR messenger RNA. Mol Endocrinol 13, 1896-1911.
    Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
    Hellerstedt, B.A., and Pienta, K.J. (2002). The current state of hormonal therapy for prostate cancer. CA Cancer J Clin 52, 154-179.
    Herkert, B., and Eilers, M. (2010). Transcriptional repression: the dark side of myc. Genes Cancer 1, 580-586.
    Horoszewicz, J.S., Leong, S.S., Chu, T.M., Wajsman, Z.L., Friedman, M., Papsidero, L., Kim, U., Chai, L.S., Kakati, S., Arya, S.K., et al. (1980). The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 37, 115-132.
    Huang, J., Kong, W., Zhang, J., Chen, Y., Xue, W., Liu, D., and Huang, Y. (2016). c-Myc modulates glucose metabolism via regulation of miR-184/PKM2 pathway in clear-cell renal cell carcinoma. Int J Oncol 49, 1569-1575.
    Itoh, T., Tanioka, M., Matsuda, H., Nishimoto, H., Yoshioka, T., Suzuki, R., and Uehira, M. (1999). Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17, 177-181.
    Jacob, A., Jing, J., Lee, J., Schedin, P., Gilbert, S.M., Peden, A.A., Junutula, J.R., and Prekeris, R. (2013). Rab40b regulates trafficking of MMP2 and MMP9 during invadopodia formation and invasion of breast cancer cells. J Cell Sci 126, 4647-4658.
    Jozwiak, P., Forma, E., Brys, M., and Krzeslak, A. (2014). O-GlcNAcylation and Metabolic Reprograming in Cancer. Front Endocrinol (Lausanne) 5, 145.
    Kato, Y., Lambert, C.A., Colige, A.C., Mineur, P., Noel, A., Frankenne, F., Foidart, J.M., Baba, M., Hata, R., Miyazaki, K., et al. (2005). Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling. J Biol Chem 280, 10938-10944.
    Kim, J.W., Gao, P., Liu, Y.C., Semenza, G.L., and Dang, C.V. (2007). Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27, 7381-7393.
    Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177-185.
    Kim, T.D., Jin, F., Shin, S., Oh, S., Lightfoot, S.A., Grande, J.P., Johnson, A.J., van Deursen, J.M., Wren, J.D., and Janknecht, R. (2016). Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest 126, 706-720.
    Kokontis, J., Takakura, K., Hay, N., and Liao, S. (1994). Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res 54, 1566-1573.
    Koppenol, W.H., Bounds, P.L., and Dang, C.V. (2011). Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11, 325-337.
    Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705.
    Kypta, R.M., and Waxman, J. (2012). Wnt/beta-catenin signalling in prostate cancer. Nat Rev Urol 9, 418-428.
    LeBleu, V.S., O'Connell, J.T., Gonzalez Herrera, K.N., Wikman, H., Pantel, K., Haigis, M.C., de Carvalho, F.M., Damascena, A., Domingos Chinen, L.T., Rocha, R.M., et al. (2014). PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16, 992-1003, 1001-1015.
    Li, F., Wang, Y., Zeller, K.I., Potter, J.J., Wonsey, D.R., O'Donnell, K.A., Kim, J.W., Yustein, J.T., Lee, L.A., and Dang, C.V. (2005). Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25, 6225-6234.
    Liberti, M.V., and Locasale, J.W. (2016). The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci 41, 211-218.
    Lu-Yao, G.L., Albertsen, P.C., Moore, D.F., Shih, W., Lin, Y., DiPaola, R.S., Barry, M.J., Zietman, A., O'Leary, M., Walker-Corkery, E., et al. (2009). Outcomes of localized prostate cancer following conservative management. JAMA 302, 1202-1209.
    Margueron, R., Trojer, P., and Reinberg, D. (2005). The key to development: interpreting the histone code? Curr Opin Genet Dev 15, 163-176.
    McGrath, J., and Trojer, P. (2015). Targeting histone lysine methylation in cancer. Pharmacol Ther 150, 1-22.
    Mehner, C., Hockla, A., Miller, E., Ran, S., Radisky, D.C., and Radisky, E.S. (2014). Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 5, 2736-2749.
    Miao, P., Sheng, S., Sun, X., Liu, J., and Huang, G. (2013). Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life 65, 904-910.
    Miller, D.M., Thomas, S.D., Islam, A., Muench, D., and Sedoris, K. (2012). c-Myc and cancer metabolism. Clin Cancer Res 18, 5546-5553.
    Morrish, F., and Hockenbery, D. (2014). MYC and mitochondrial biogenesis. Cold Spring Harb Perspect Med 4.
    Nagase, H., Visse, R., and Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69, 562-573.
    Ozawa, M., Baribault, H., and Kemler, R. (1989). The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 8, 1711-1717.
    Perlmutter, M.A., and Lepor, H. (2007). Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev Urol 9 Suppl 1, S3-8.
    Peterson, C.L., and Laniel, M.A. (2004). Histones and histone modifications. Curr Biol 14, R546-551.
    Rider, J.R., Sandin, F., Andren, O., Wiklund, P., Hugosson, J., and Stattin, P. (2013). Long-term outcomes among noncuratively treated men according to prostate cancer risk category in a nationwide, population-based study. Eur Urol 63, 88-96.
    Rotili, D., and Mai, A. (2011). Targeting Histone Demethylases: A New Avenue for the Fight against Cancer. Genes Cancer 2, 663-679.
    Schmalfeldt, B., Prechtel, D., Harting, K., Spathe, K., Rutke, S., Konik, E., Fridman, R., Berger, U., Schmitt, M., Kuhn, W., et al. (2001). Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin Cancer Res 7, 2396-2404.
    Shim, H., Dolde, C., Lewis, B.C., Wu, C.S., Dang, G., Jungmann, R.A., Dalla-Favera, R., and Dang, C.V. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94, 6658-6663.
    Son, J., Lyssiotis, C.A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R.M., Ferrone, C.R., Mullarky, E., Shyh-Chang, N., et al. (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105.
    Thalmann, G.N., Anezinis, P.E., Chang, S.M., Zhau, H.E., Kim, E.E., Hopwood, V.L., Pathak, S., von Eschenbach, A.C., and Chung, L.W. (1994). Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54, 2577-2581.
    Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.
    Varier, R.A., and Timmers, H.T. (2011). Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta 1815, 75-89.
    Vellaichamy, A., Dezso, Z., JeBailey, L., Chinnaiyan, A.M., Sreekumar, A., Nesvizhskii, A.I., Omenn, G.S., and Bugrim, A. (2010). "Topological significance" analysis of gene expression and proteomic profiles from prostate cancer cells reveals key mechanisms of androgen response. PLoS One 5, e10936.
    Wang, B.J., Yang, S.D., and Chuu, C.P. (2015). Knockdown of KDM4C suppresses the proliferation, migration, and invation of prostate cancer cells (Unpublished master’s thesis: National Tsing Hua University).
    Wang, L.Y., Hung, C.L., Chen, Y.R., Yang, J.C., Wang, J., Campbell, M., Izumiya, Y., Chen, H.W., Wang, W.C., Ann, D.K., et al. (2016). KDM4A Coactivates E2F1 to Regulate the PDK-Dependent Metabolic Switch between Mitochondrial Oxidation and Glycolysis. Cell Rep 16, 3016-3027.
    Warburg, O. (1956). On the origin of cancer cells. Science 123, 309-314.
    Ward, P.S., and Thompson, C.B. (2012). Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297-308.
    Weber, G.F. (2016). Metabolism in cancer metastasis. Int J Cancer 138, 2061-2066.
    Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M., et al. (2006). Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467-481.
    Wise, D.R., DeBerardinis, R.J., Mancuso, A., Sayed, N., Zhang, X.Y., Pfeiffer, H.K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S.B., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105, 18782-18787.
    Wise, D.R., and Thompson, C.B. (2010). Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35, 427-433.
    Wissmann, M., Yin, N., Muller, J.M., Greschik, H., Fodor, B.D., Jenuwein, T., Vogler, C., Schneider, R., Gunther, T., Buettner, R., et al. (2007). Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9, 347-353.
    Wu, H.C., Hsieh, J.T., Gleave, M.E., Brown, N.M., Pathak, S., and Chung, L.W. (1994). Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer 57, 406-412.
    Xu, D., McKee, C.M., Cao, Y., Ding, Y., Kessler, B.M., and Muschel, R.J. (2010). Matrix metalloproteinase-9 regulates tumor cell invasion through cleavage of protease nexin-1. Cancer Res 70, 6988-6998.
    Yang, Z.Q., Imoto, I., Fukuda, Y., Pimkhaokham, A., Shimada, Y., Imamura, M., Sugano, S., Nakamura, Y., and Inazawa, J. (2000). Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res 60, 4735-4739.
    Yeung, S.J., Pan, J., and Lee, M.H. (2008). Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell Mol Life Sci 65, 3981-3999.
    Zeisberg, M., and Neilson, E.G. (2009). Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119, 1429-1437.

    QR CODE