簡易檢索 / 詳目顯示

研究生: 吳浩昀
Wu, Haw-Yun
論文名稱: 新型邏輯製程N通道接點耦合閘極多次寫入非揮發性記憶體
A New Logic Process N-Channel Contact Coupling Gate Multi-time Programmable Non-Volatile Memory Cell
指導教授: 林崇榮
Lin, Chrong-Jung
口試委員: 金雅琴
King, Ya-Chin
施教仁
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 邏輯製程多次寫入非揮發性記憶體
外文關鍵詞: logic NVM, contact coupling, MTP
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    隨著可攜式電子產品的蓬勃發展,內嵌式非揮發性記憶體的市場需求量大增,內嵌式非揮發性記憶體的開發逐漸受大家重視,其中,單一複晶矽浮動閘極非揮發性記憶體成為目前市場的主流,然而,目前已發展的單一複晶矽閘極非揮發性記憶體大多有著元件浮動閘極耦合率過低,導致在元件操作上受到許多限制。本論文提出一新型N通道接點耦合閘極多次寫入非揮發性記憶體,在標準邏輯製程下,藉由耦合接點結構來提升元件對浮動閘極的耦合能力。
    新型N通道接點耦合閘極多次寫入非揮發性記憶體採用單一複晶矽閘極架構,寫入操作以通道熱載子轟擊引發熱電子注入,與利用Fowler-Nordheim穿遂效應進行抹除操作,可以多次性寫入與抹除。此新型元件可在50ms內完成寫入操作,抹除時間則為150ms,再者元件的耐久度可達10K次,資料保存性在125oC下達1000小時以上的考驗。基於耦合接點的特性,此元件不需額外的耦合井即可進行電性抹除,在陣列運用上也不需要額外的選擇閘極,因此有著極小的細胞尺寸,很適合應用於高密度的記憶體陣列。此新型元件擁有良好的操作特性與資料可靠度,與極小的細胞尺寸,提供內嵌式非揮發性記憶體一個新的選擇與應用。


    bedded nonvolatile memory (eNVM) are growing fast, and single poly floating gate eNVM is the mainstream in the market. However, single poly floating gate eNVM has faced the challenge that the coupling ratio of the floating gate is too small, result in the difficulties in cell operation. This study proposes a new N-channel contact coupling gate multi-time programmable non-volatile memory cell. By adding multiple coupling contacts, the coupling ratio of the floating gate can be improved without additional process step and extra masking.
    The new N-channel contact coupling gate multi-time programmable non-volatile memory cell is single poly and stores charge in floating gate by channel hot electron injection, and erases by Fowler-Nordherim tunneling. The program time is within 50□s, erase time is within 150ms, endurance is up to 10K and the cell has been verified to pass the criteria after 1000 hours of retention bake at 125oC. The contact coupling’s characterization needs neither another coupling well served as an erase gate nor a select transistor in array operation. Therefore, an ultra small cell size has been demonstrated and suitable for high density application. The new cell has good operation performance, high reliability, and ultra small cell size, so it will be a promising new solution for eNVM applications.

    內文目錄 摘要 i Abstract ii 致謝 iii 內文目錄 iv 附圖目錄 vii 表格目錄 ix 第一章 序論 1 1.1 浮動閘極非揮發性記憶體之簡介 1 1.2 論文大綱 2 第二章 邏輯製程下非揮發性記憶體之回顧 4 2.1 載子寫入抹除機制 4 2.1.1 通道熱載子轟擊引發熱電子(CHE)及熱電洞(CHH) 4 2.1.2 Fowler-Nordheim(FN)穿遂效應 5 2.1.3 帶對帶的穿遂效應(Band-to-Band-Tunneling) 5 2.2 單一複晶矽閘極一次寫入非揮發性記憶體 6 2.2.1 XPM 6 2.2.2 NeoBit 6 2.3 單一複晶矽閘極多次寫入非揮發性記憶體:NOI 7 2.4 小結 7 第三章 新型N通道接點耦合閘極非揮發性記憶體之結構與操作機制介紹 17 3.1 元件結構與製程流程 17 3.1.1 元件結構 17 3.1.2 製程流程 18 3.2 接點耦合閘極的特點與操作原理 18 3.3 元件操作機制與原理 19 3.3.1寫入操作機制與原理 19 3.3.2抹除操作機制與原理 20 3.3.3讀取操作機制與原理 20 3.4 小結 21 第四章 新型N通道接點耦合閘極多次寫入非揮發性記憶體特性分析 29 4.1 元件基本特性分析 29 4.1.1 寫入特性分析 30 4.1.2 抹除特性分析 30 4.1.2.1 以FN穿隧效應為抹除操作之特性分析……………30 4.1.2.2 以BBHH注入效應為抹除操作之特性分析……….31 4.1.3 讀取特性分析 31 4.2 元件可靠度分析 31 4.2.1 寫入干擾 32 4.2.2 讀取干擾 32 4.2.3 元件耐久度 33 4.2.4 資料保存特性 34 4.3 小結 34 第五章 新型N通道接點耦合閘極非揮發性記憶體之設計與最佳化 52 5.1 不同耦合率對元件的影響 52 5.2 不同RPO厚度對耦合率的影響 53 5.3 元件應用於NAND型陣列的可能性 53 5.4 小結 54 第六章 總結 65 6.1 新元件與其他相關非揮發性記憶體元件的優點分析 65 6.2 結語與未來展望 65 參考文獻 69   附圖目錄 圖2.1 N型通道產生熱載子注入(CHE)示意圖………………………..... 9 圖2.2 (a)Fowler-Nordheim穿遂效應示意圖 (b)A-A’方向之能帶圖….10 圖2.3 (a)帶對帶穿遂效應示意圖 (b)A-A’方向之能帶圖……………….11 (c)B-B’方向之能帶圖 12 圖2.4 Killpass XPM元件的結構圖 13 圖2.5 NeoBit元件的結構圖 14 圖2.6 NeoBit的寫入電路示意圖 15 圖2.7 NOI元件的結構圖 16 圖3.1 N通道接點耦合閘極非揮發性記憶體之元件布局示意圖 22 圖3.2 N通道接點耦合閘極非揮發性記憶體之元件結構剖面圖… 23 圖3.3 此新型元件的TEM(Transmission Electron Microscopy)剖面圖 24 圖3.4 此新型元件耦合接點-電阻保護氧化層-浮動閘極介面的放大圖 25 圖3.5 此新型元件的操作步驟圖 26 圖3.6 此新型元件的讀取操作圖 27 圖3.7 (a)讀取邏輯“1”狀態 (b)讀取邏輯“0”狀態 28 圖4.1 量測環境示意圖 35 圖4.2 藉由subthreshold swing推估出元件的耦合率為49% 36 圖4.3 不同位元線電壓的寫入特性 37 圖4.4 不同字元線電壓的寫入特性 38 圖4.5 在不同字元線電壓下,利用FN穿遂效應的抹除特性 39 圖4.6 在不同位元線電壓下,利用BBHH電洞注入效應的抹除特性 40 圖4.7 在不同字元線電壓下,利用BBHH電洞注入效應的抹除特性 41 圖4.8 此新型元件在照完紫外光、寫入完成後與抹除完成後的讀取狀態 42 圖4.9 此元件採用NOR型陣列之電路示意圖 .43 圖4.10 此元件採用NOR型陣列之佈局示意圖 44 圖4.11 不同字元線電壓對此元件的寫入干擾特性 45 圖4.12 位元線電壓為4V時對此元件的寫入干擾特性 46 圖4.13 當VBL< 1.46V時,可忍受十年以上的讀取干擾 47 圖4.14 元件在使用通道熱電子注入為寫入機制,位元線電壓為4V時的耐久度特性 48 圖4.15 元件在使用通道熱電子注入為寫入機制,位元線電壓為5V時的耐久度特性 49 圖4.16 在125oC下元件的資料儲存特性 50 圖5.1 不同耦合接點個數元件的位元線電流圖,可藉此判斷耦合率的大小 55 圖5.2 耦合接點個數對FN抹除電壓及元件細胞尺寸的影響 56 圖5.3 元件RPO厚度為850Å的位元線電流圖,顯示出耦合率的大小 .57 圖5.4 元件RPO厚度為1700Å及850Å的耦合率比較圖 ..58 圖5.5 元件RPO厚度為850Å的資料儲存特性 .59 圖5.6 在不同字元線電壓下,利用FN穿遂效應的寫入特性 60 圖5.7 此元件應用於NAND型陣列的電路示意圖 61 圖5.8 此元件應用於NAND型陣列的布局示意圖 ..62 圖5.9 此元件在利用FN寫入/FN抹除的耐久度特性 .63 圖6.1 差動式非揮發性記憶體的電路結構圖…………………………….67 表格目錄 表4.1 N通道接點耦合閘極非揮發性記憶體元件的操作電壓表 51 表5.1 此元件在NAND型陣列時的建議操作電壓表 64 表6.1 此新型元件與相關非揮發性記憶體比較表 68

    參考文獻
    [1] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol.46, pp. 1283, 1967.
    [2] D. Frohman-Bentchkowsky, “A fully - decoded 2048-Bit electrically - programmable MOS - ROM,” ISSCC Technical Digest, Feb. 1971, pp. 80-81., 1971.
    [3] K. Ohsaki, N. Asamoto, I;. Takagaki, “A Single Poly EEPROM Cell Structure for Use in Standard COMS Processes” IEEE J. Solid State Circuits, Vol. 29, No. 3, March 1994, PP. 311-316.
    [4] P. Kazcounian and B. Eitan, “A single-poly EPROM for custom CMOS logic applications,” IEEE Custom Integrated Circuit Conference, pp. 59-62, 1986.
    [5] M.-H. Chi and A. Bergemont, “A New Single-poly FLASH Memory Cell with Low-voltage and Low power Operations for Embedded Applications,” IEEE Device Research Conference Digest, 5th, pp. 126-127, 1997.
    [6] P. Pavan, R. Bez, P. Olivo, and E. Zanoni. “Flash memory cells-an overview,” Proc. IEEE, pp. 1248, 1997.
    [7] S. Lai, “Flash Memories: where we were and where we are going.” IEEE IEDM Technical Digest, pp. 971, 1998.
    [8] C. Hu, “Lucky-electron model of channel hot-electron emission.” IEEE IEDM Tech. Dig., p. 22, 1979.
    [9] R. B. Fair and R. C. Sun, “Threshold-voltage instability in MOSFET’s due to channel hot-hole emission” IEEE Trans. Electron Devices, vol. ED-28, pp. 83-93, Jan. 1981.
    [10] Fowler, R. H.; Nordheim, L., “Electron Emission in Intense Electric Fields” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Volume 119, Issue 781, pp. 173-181
    [11] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol.40, no.1, pp. 278-283, 1969.
    [12] Z. A. Weinberg, “On tunneling in MOS structure,” J. Appl. Phys., vol. 53, pp. 5052, 1982.
    [13] J. Peng, G .Rosendale , M . Fliesler , D. Fong , J. Wang ,C. Ng ,Zs Liu ,Harry Luan," A Novel Embedded OTP NVM Using Standard Foundry CMOS Logic Technology", IEEE 2006.
    [14] Peng, Jack, et al., “Programming methods and circuits for semiconductor memory cell and memory array using a breakdown phenomena in an ultrathin dielectric, "US Patent # US 6,671,040 B2, Dec.30, 2003.
    [15] Wang, R.S.C.; Shen, R.S.J.; Hsu, C.C.H., “Neobit® - high reliable logic non-volatile memory (NVM)” Physical and Failure Analysis of Integrated Circuits, 2004. IPFA 2004. Proceedings of the 11th International Symposium on the 5-8 July 2004 Page(s):111 - 114
    [16] Hsu, Charles Ching-Hsiang; Lin, Yen-Tai; Shen, Shih-Jye , “Future Prospective of Programmable Logic Non-Volatile Device” ASSCC 2006. IEEE Asian, Nov. 2006 Page(s):35 - 37
    [17] C.-S Hsieh, P.-C Kuo, C.-S Chiu, C.-H Hon, C.-C Fan, W.-C Kung, Z.-W Wang, and Erik S. Jeng, “NVM Characteristics of single MOSFET cells Using Nitride Spacers With Gate-to-Drain NOI” IEEE Trans. Electron Devices, vol. 51, pp. 1811-1817, Nov. 2004.
    [18] Erik S. Jeng, C.-S Chiu, C.-H Hon, P.-C Kuo, C.-C Fan, C.-S Hsieh, H.-C Hsu, and Y.-F Chen,“Performance Improvement and Scalability of Nonoverlapped Implantation nMOSFETs With Charge-Trapping Spacers as Nonvolatile Memories” IEEE Trans. Electron Devices, vol. 54, pp. 3299-3307, Dec. 2007.
    [19] R. Bez, E. Camerlenghi, D. Cantarelli, L. Ravazzi, and G. Crisenza, “A novel method for the experimental determination of the coupling ratios in submicron EPROM and flash EEPROM cells” IEEE IEDM Technical Digest, pp. 99, 1990.
    [20] Brand, K. Wu, S. Pan, and D. Chin, “Novel read disturb failure mechanism induced by FLASH cycling,” IEEE International Reliability Physics Symp., p. 127, 1993
    [21] S. Haddad, C. Chang, B Swaminathan, and J. Lien, “Degradations due to hole trapping in flash memory cells” IEEE Electron Device Lett., vol. 10, Issue 3, pp. 117-119, 1989.
    [22] R. Fastow, K. Ahmed, S. Haddad, M. Randolph, C. Huster, and P. Hom, “Bake Induced Charge Gain in NOR Flash Cells” IEEE Electron Device Lett., vol. 21, Issue 4, pp. 184-186, 2000.
    [23] F. Arai, T. Maruyama, R, Shirota, “Extended data retention process technology for high reliable flash EEPROMs of 106 to 107 W/E cycles.” IEEE International Reliability Physics Symp., 1998
    [24] B. De Salvo, G. Ghibaudo, G. Pananakakis, G. Guillaumot, P. Chandelier, and G. Reimbold, “A new extrapolation law for data-retention time-to-failure of nonvolatile memories” IEEE Electron Device Lett., vol. 20, Issue 5, pp. 197-199, 1999.
    [25] M. Momodomi, T. Tanaka, Y. Iwata, Y. Tanaka, H. Oodiara, Y. Itoh, R. Shirota, K. Ohuchi, F. Matsuoka, “A 4-Mbit NAND-EEPROM with tight programmed Vt distribution” IEEE Journal of Solid State Circuit, vol. 26, Issue 4, 1991.
    [26] K. Naruke, S. Taguchi, and M. Wada, “Stress-induced leakage current limiting to scale down EEPROM tunnel oxide thickness,” in IEDM Tech. Dig. 1988, p. 424.
    [27] S. Aritome, R. Shirota, G. Hemnik, T. Endoh, and F. Masuoka, “Reliability issues of Flash memory cells,” Proc. IEEE, vol. 81, pp. 776–788, May 1993.
    [28] B. Wang, M. Niest, Y. Ma, H. Nguyen, and R. Paulsen, “Scaling Tunneling Oxide to 50Å in Floating-Gate Logic NVM at 65nm and Beyond” IIRW final report, 2007.
    [29] Y. Ma, T. Gilliland, B. Wang, R. Paulsen, A. Pesavento, C. H. Wang, H. Nguyen, T. Humes, and C. Diorio, “Reliability of pFET EEPROM with 70-Å tunnel oxide manufactured in generic logic CMOS processes,” IEEE Trans. Device Mater. Rel., vol. 4, no. 3, pp. 353–358, Sep. 2004.
    [30] Te-Liang Lee, Yi-Hung Tsai, Wun-Jie Lin, Hsiao-Lan Yang, Chiu-Wang Lien, Chrong Jung Lin, and Ya-Chin King, “A New Differential P-Channel Logic-Compatible Multiple-Time Programmable (MTP) Memory Cell With Self-Recovery Operation,” IEEE Electron Device Lett., Issue 99, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE