簡易檢索 / 詳目顯示

研究生: 張偉國
Chang, Wei-Guo
論文名稱: 奈米金屬結構的表面電漿子在螢光分子與奈米粒子之檢測應用
Detections of Fluorescent Molecules and Nanoparticles by Using Surface Plasmons in Metallic Nanostructures
指導教授: 曾繁根
Tseng, Fan-Gang
魏培坤
Wei, Pei-Kuen
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 88
中文關鍵詞: 奈米結構表面電漿子生物感測
外文關鍵詞: nanostructures, surface plasmons, biomedical detection
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由奈米金屬結構產生的局域表面電漿共振,可以達成高敏感度的生物檢測,在生醫光電領域有很高的應用潛能。本文中我們介紹利用銀奈米結構所產生的局域增益光場應用於螢光分子之檢測上,不同幾何結構所造成的螢光增益效應不同,我們發現奈米圓柱在相同的條件下,對螢光亮度提升有最佳效果。另外,使用銀奈米孔洞所產生之局域表面電漿場,可以捕捉液體內隨機分佈之奈米金顆粒,進一步配合理論模擬,驗證奈米顆粒進入奈米孔洞時產生之暗場光學變化。


    Localized surface plasmons in metallic structures can sensitively detect biomolecules and has very high potentials in the biomedical applications. In this text, we introduce our research of using silver nanostructures to enhance the detection of fluorescent molecules. Different shapes of structures were studied by the dark-field optical microscopy. Comparing to the triangular and rectangular structures, the rod-like structure has the best effect in the fluorescence enhancement. In addition, the localized plasmons generate an optical trap that can increase the immobilization of nano-objects. Using the theoretical simulations and the optical microscopy, we verified the trapping effect of gold nanoparticles in the metallic nanoholes.

    論文指導教授推薦書 學位考試委員會審定書 中文摘要 英文摘要 誌謝 第一章 緒論 1-1 研究動機 1-2 內容簡介 1-3 文獻回顧 1-3.1 奈米金屬洞表面電漿共振效應 1-3.2 奈米金屬探針表面電漿共振效應 1-3.3 奈米金屬粒子的光學特性 1-3.4 表面電漿捕捉效應 第二章 金屬的電漿共振模態與激發 2-1 表面電漿子簡介 2-2 金屬平面的表面電漿子 2-3 金屬奈米粒子的表面電漿共振 2-4 表面電漿子的激發 2-5 表面電漿耦合共振模型 第三章 有限時域差分法理論計算 3-1 有限時域差分法簡介 3-2 計算結果 3-2.1 圓錐結構模擬 3-2.2 孔洞結構模擬 第四章 奈米金屬結構的製作 4-1 電子束微影技術簡介 4-2 反應式離子蝕刻術簡介 4-3 奈米金屬結構的製作與分析 4-3.1 孔洞/金球的製程技術 第五章 奈米金屬結構的光學特性 5-1 奈米金屬結構對螢光分子的增強效應 5-1.1 凹形結構量測 5-1.2 凸形結構量測 5-2 金屬結構對奈米粒子的作用 5-2.1 金屬孔洞對奈米粒子的作用 5-2.2 金屬柱對奈米粒子的作用 第六章 結論 參考文獻

    [1]H. P. Lu, L. Y. Xun, and X. S. Xie, "Single-molecule enzymatic dynamics," Science 282, 1877-1882 (1998).
    [2]Q. F. Xue, and E. S. Yeung, "Differences in the chemical-reactivity of individual molecules of an enzyme," Nature 373, 681-683 (1995).
    [3]T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, "Imaging of single fluorescent molecules and individual atp turnovers by single myosin molecules in aqueous-solution," Nature 374, 555-559 (1995).
    [4]M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
    [5]Y. Rondelez, G. Tresset, K. V. Tabata, H. Arata, H. Fujita, S. Takeuchi, and H. Noji, "Microfabricated arrays of femtoliter chambers allow single molecule enzymology," Nat. Biotechnol. 23, 361-365 (2005).
    [6]H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006).
    [7]S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
    [8]P. K. Wei, H. L. Chou, and W. S. Fann, "Optical near field in nanometallic slits," Opt. Express 10, 1418-1424 (2002).
    [9]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [10]S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, New York, 2001).
    [11]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [12]H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
    [13]C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1998).
    [14]R. H. Doremus, "Optical properties of small gold particles," J. Chem. Phys. 40, 2389-2396 (1964).
    [15]R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001).
    [16]D. S. Lee, O. Sakai, and K. Tachibana, "Microplasma-Induced Deformation of an Anomalous Response Spectrum of Electromagnetic Waves Propagating along Periodically Perforated Metal Plates," Jpn. J. Appl. Phys. 48, 7 (2009).
    [17]A. Ashkin, and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987).
    [18]Y. L. Zhang, D. Y. Zhao, C. H. Zhou, and X. Y. Jiang, "Directional light emission through a metallic nanostructure," J. Appl. Phys. 105, 6 (2009).
    [19]T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, "Automated single-cell manipulation and sorting by light trapping," Appl. Optics 26, 5311-5316 (1987).
    [20]C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature 421, 423-427 (2003).
    [21]S. Kawata, and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser-beam," Opt. Lett. 17, 772-774 (1992).
    [22]S. Kawata, and T. Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide," Opt. Lett. 21, 1768-1770 (1996).
    [23]L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 76, 1993-1995 (2000).
    [24]K. Grujic, O. G. Helleso, J. P. Hole, and J. S. Wilkinson, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express 13, 1-7 (2005).
    [25]K. Svoboda, and S. M. Block, "Optical trapping of metallic rayleigh particles," Opt. Lett. 19, 930-932 (1994).
    [26]T. Sugiura, T. Okada, Y. Inouye, O. Nakamura, and S. Kawata, "Gold-bead scanning near-field optical microscope with laser-force position control," Opt. Lett. 22, 1663-1665 (1997).
    [27]H. Furukawa, and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23, 216-218 (1998).
    [28]P. C. Ke, and M. Gu, "Characterization of trapping force on metallic Mie particles," Appl. Optics 38, 160-167 (1999).
    [29]M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 4 (2008).
    [30]O. J. F. Martin, and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Physical Review E 58, 3909 (1998).
    [31]M. Paulus, and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green's tensor approach," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 18, 854-861 (2001).
    [32]L. Huang, S. J. Maerkl, and O. J. F. Martin, "Integration of plasmonic trapping in a microfluidic environment," Opt. Express 17, 6018-6024 (2009).
    [33]R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-402 (1902).
    [34]U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," J. Opt. Soc. Am. 31, 213-222 (1941).
    [35]S.-H. Lu, "Detection of Nanoparticles by Planar Evanescent Wave and Its Applications for Biosensing," in Institute of Optoelectronic Sciences(National Taiwan Ocean University, Keelung, 2006), p. 73.
    [36]A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE