研究生: |
范容榕 Rong-Jong Fan |
---|---|
論文名稱: |
高速節段式平行加法器 The High-Speed Segment Adders in Parallel Computation |
指導教授: |
張慶元
Tsin-Yuan Chang 羅浩榮 Hao-Yung Lo |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 1冊(67頁) |
中文關鍵詞: | 加法器 、節段式平行加法器 |
外文關鍵詞: | adder, segmented parallel adder |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
加法電路是所有計算機中,算數邏輯單元 ( ALU ) 的基本電路。在計算機的運算中,例如:加法、減法、乘法、除法都需要加法器的運用才能達成。加法器可將2組2進位的數字作加法的運算,是組成數位運算系統的基本邏輯元件,因此若一位數位電路的設計者想要提高設計電路的運算速度,提高加法器的運算速度,可間接的提高整個數位邏輯電路的運算速度。因此提高加法器的運算速度成為數位電路設計者競相努力的目標。
加法電路的運算速度,其主要問題在於進位傳遞的延遲時間。為了提高計算機的運算速度,在過去幾十年來,有關改進這方面問題的論文陸續被發表 [1-6,8]。如:前看進位加法器 (Carry Look-ahead Adder) [2,3,8]、進位跳躍加法器 (Carry-Skip Adder)、進位儲存加法器 (Carry Save Adder)、進位選擇加法器 (Carry Select Adder) [5,6,8] 等等。
在此我們討論過去數位電路先進們所提議的一些加法器,Ripple Carry Adder(RCA)、Carry Look-Ahead Adder(CLA) [2,3,8]、Carry Select Adder(CSA) [5,6,8] 等,此外我們亦提供一種新架構 Segmented Parallel Adder(SA) 作為加法器突破速度的另一種選擇。
本論文的架構如下:在第二章,針對目前較常使用的加法器電路作一個概略性的描述,以便與我們所提出的方法作比較。在第三章,我們提出the segmented parallel adder作為加法器的另一種選擇架構。在第四章,我們將實際模擬比較the segmented parallel adder較各種常使用加法器優越的地方。在第五章,作一個扼要的討論與心得,還有未來可能的研究方向。
The speed of a digital arithmetic processor for addition, subtraction, multiplication, and division is heavily dependent on the speed of the adders used in the system. In the system on chip (SoC) generation, faster speed and smaller area electric devices are required to build the large circuit. In order to increase the speed of ALU, increasing the speed of adders is a useful and efficient method.
This thesis proposes a segment parallel adder (SA) as a choice for various high speed addition techniques. This segment parallel adder consists of horizontal and vertical segments those are executed the addition in parallel. When the horizontal segment starts addition from the LSB to the MSB, the vertical segment is also active simultaneously from the top to the bottom such that the time delay from the top to the bottom should be equal to that of the horizontal segment of the carry propagation from the LSB to the MSB. In this way, an optimal matched addition is obtained.
From the simulation result, the proposed variable segment parallel adder reveals the fewest delay and fastest speed. The delay of the variable segmented parallel adder can be reduced to 29% compared with the CSA at the cost of larger area of 72%. The AT2 in this case is also reduced to 14%.
[1] A. Tyagi, “A reduced-area scheme for carry-select adders,” IEEE Trans. on Computers, vol.42, no. 10. October 1993.
[2] D. Harris et al., “CMOS VLSI DESIGN – A Circuits and Systems Perspective * Third Edition ”
[3] V. Kantabutra, “A recursive carry-lookahead/carry-select hybrid adder,” IEEE Trans. on Computers, vol. 42, no. 12, pp. 1495-1499, Dec.1993.
[4] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel-prefix VLSI ling adders,” IEEE Trans. on Computers, vol. 54, no. 2, FEB. 2005
[5] V. G. Oklobdzija et al., ‘‘ Energy-delay estimation technique for high-performance microprocessor VLSI adders ,’’ Proc. of 16th Symp. on Computer Arithmetic, pp. 15-22, June 2003.
[6] Y. M. Huang and J. B. Kuo, “A high-speed conditional carry select (CCS) adder circuit with a successively incremented carry number block (SICNB) structure for low-voltage VLSI implementation,” IEEE Trans. on Circuits and Systems, vol. 47, no. 10, OCT. 2000.
[7] A. Weinberger and J. L. Smith, ”A logic for High-Speed Addition,” National Bureau of Standards Circular 591, pp. 3-12, 1958. Reprinted in [14] pp. 47-56.
[8] O. L. MacSorley, “High Speed Arithmetic in Binary Computers,” Proc. IRE, vol. 49, pp. 67-91, 1961. Reprinted in [14] pp. 14-38.
[9] A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly Journal of Mechanics and Applied Mathematics, vol.4, pp. 236-240, 1951. Reprinted in [14] pp. 100-104.
[10] A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. on Electronic Computers, vol. EC-10, no. 3, pp.389-400, Sept. 1961.
[11] A. Tyagi, “A Reduced-Area Scheme for Carry-Select Adders,” IEEE Trans. on Computers, vol. 42, no. 10, pp. 1163-1170, Oct. 1993.
[12] W. C. Yeh and C. W. Jen, “Generalized Earliest-First Fast Addition Algorithm,” IEEE Trans. on Computers, vol. 52, no. 10, pp. 1233-1242, Oct. 2003.
[13] J. Wang et al., “Area-Time Analysis of Carry Lookahead Adders Using Enhenced Multiple Output Domino Logic,” Proceedings of IEEE International Symposium on Circuits and Systems, vol.4, pp. 59-62, 1994.
[14] A. Bellaouar and M. I. Elmasry, “Low-Power Digital VLSI Design circuits and systems”, Kluwwer Academic Publishers, Boston 1995.
[15] N. Takagi and T. Horiyama, “A High-Speed Reduced-Size Adder Under Left-to-Right Input Arrival,” IEEE Trans. on Computers, vol. 48, no. 1, pp. 76-80, January 1999.
[16] L. Ciminiera and P. Montuschi, “Carry-Save Multiplication Schemes without Final Addition,” IEEE Trans. on Computers, vol. 45, no. 9, pp. 1050-1055, Sept. 1996.
[17] M. D. Ercegovac and T. Lang, “On-the-Fly Conversion of Redundant into Convemtional Representations,” IEEE Trans. on Computers, vol. 36, no. 7, pp. 895-897, July 1987.
[18] M. D. Ercegovac and T. Lang, “Fast Multiplication without Carry Propagate Addition,” IEEE Trans. on Computers, vol. 39, no. 11, pp. 1,385-1,390, Nov. 1990.
[19] G. Jung and G. E. Sobelman, “High-Speed Adder Design Using Time Borrowing and Early Carry Propagation,” 07803-6594-4©2000IEEE, pp. 43-47.
[20] J. Wang et al., “Fast Adders using Enhanced Multiple-Output Domino Logic,” IEEE Journal of Solid-State Circuits, vol. 32, no. 2, pp. 206-214, February, 1997.
[21] S. Waser and M. J. Flynn, “Introduction to Arithmetic for Digital System Design,” Chapter3, CBS Publishing, 1982.
[22] I. S. Hwang and A. L. Fisher, “Ultra Fast Compact 32-bit CMOS Adder in Multiple-Output Domino Logic,” IEEE Journal of Solid-State Circuits, vol. 24, pp. 358-369, 1989.
[23] P. Montuschi and L. Ciminiera, “n×n Carry-Save Multipliers without Final Addition,” Proc. of 11th IEEE Symp. on Computer Arithmetic, 1993, pp.54-61.
[24] C. Hall, “The CMOS standard cell library,” Report ICI-021R0, Queen’s University, Kingston, 1990.