研究生: |
楊漢興 |
---|---|
論文名稱: |
以天然高分子Gelatin微粒包覆新型血管新生因子Ginsenoside Rg1於心肌梗塞治療上的應用 |
指導教授: |
江安世
宋信文 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 五加參皂苷Rg1 、明膠 、生物可分解微粒 、血管新生 、心肌梗塞 、組織學 、鹼性纖維母細胞生長因子 、ginipin 、藥物制放 |
外文關鍵詞: | Ginsenoside Rg1, gelatin, biodegradable microsphere, angiogenesis, myocardial infarction, histology, bFGF, genipin, controlled release |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
文獻中,有許多研究團隊利用注射血管新生因子來治療心肌梗塞。目前用來當做促進血管新生的生長因子大部分都是蛋白質,然而這些蛋白質生長因子的穩定性不佳,很容易失去其活性。在我們先前的研究裡,已發現由人蔘中萃取純化之ginsenoside Rg1 (Rg1)具有促進血管新生的效果,且其化性相當穩定。本研究擬以genipin交聯的gelatin微粒包覆Rg1,用來促進心肌梗塞後的血管新生。
實驗主要分為兩部份來進行。第一部份為體外實驗,主要目的為製備出不同交聯程度的gelatin微粒,並探討其微粒形態、含水量與抗酵素分解的能力,然後選出適當交聯程度之微粒來包覆Rg1,並探討其體外釋放行為。第二部份為體內實驗,實驗裡我們利用外科手術方式將老鼠左冠狀動脈(left coronary artery)結紮後,製造出心肌梗塞。然後將包覆Rg1的gelatin微粒(Rg1微粒)注射到心肌梗塞處,探討Rg1在壞死的心肌內,對於血管新生以及整體心臟功能的影響。實驗裡,我們以包覆bFGF的微粒(bFGF微粒)及未包覆任何藥物的微粒(空微粒)做為對照組。注射四週後取樣,並在執行心肌注射前以及取樣的前一天,以心臟超音波,觀察心臟整體功能的變化情形。取樣後,我們以巨觀觀察及組織切片來分析壞死心肌內血管新生的情形。
體外實驗結果顯示,交聯指數50%的微粒不會因吸水膨潤而相互糾結,也較不易被酵素分解殆盡。此外,以交聯指數50%微粒包覆的bFGF及Rg1,皆具有緩釋的效果。在體內實驗結果方面,注射微粒四週後,由巨觀觀察及組織切片所顯示的結果,都指出注射空微粒的老鼠,其心室前壁厚度有變薄的情形,左心室大小有外擴跡象,且纖維組織的範圍也變得更大;而注射bFGF微粒與Rg1微粒的老鼠,其左心室前壁厚度、左心室大小和纖維化的程度等心肌梗塞的現象,都與注射微粒前的老鼠無明顯差異。以心臟超音波測量的結果也證實,經由gelatin微粒釋放至梗塞處的bFGF與Rg1,雖然無法大幅度改善已受損的心臟功能,但都能夠減緩其惡化的速度。另外由免疫染色的結果,可觀察到bFGF微粒與Rg1微粒在注射四週後,心肌內的血管密度明顯地比空微粒注射四週後來得多。這些結果說明了, bFGF及Rg1皆具有促進梗塞心肌內之血管新生的作用,進而避免梗塞情形持續惡化。
以上結果證實了, Rg1微粒的確能有效促進壞死心肌內的血管新生,並間接減緩了梗塞後的整體心臟功能惡化速度。
1. Robbins, Cotran, Kumar.原著,陳永泰等人編譯. 病理學. 台北市:合記圖書出版社, 1991.p.397-446.
2. Malcolm D. Silver et al. Cardiovascular Pathology. New York: Churchill Livinstone Inc., 1983; vol.1.p.406-408
3. Frazier OH, Benedict CR, Radovancevic B, et al. Improved left ventricular function after chronic left ventricular unloading. Ann Thorac Surg 1996;62:675-681.
4. Canver CC, Chanda J. Heart transplantation. Ann Thorac Surg 2001; 72: 658-660.
5. El-Banayosy A, Korfer R, Arusoglu L, et al. Device and patient management in a bridge-to-transplant setting. Ann Thorac Surg 2001;71:S98–S102.
6. Hosenpud JD, Bennett LE, Keck BM, et al. The Registry of the International Society for Heart and Lung Transplantation: fifteenth official report-1998. J Heart Lung Transplant 1998;17:656-668.
7. Zheng JG, Shin JH, Xaymardan M, Chin A, Duignan I, Hong MK, Edelberg JM. Platelet-derived growth factor improves cardiac function in a rodent myocardial infarction model. Coronary Artery Dis 2004; 15: 59-64.
8. Chung NAY, Lydakis C, Belgore F, Blann AD, Lip GYH. Angiogenesis in myocardial infarction: An acute or chronic process? Eur Heart J 2002;23: 1604-1608.
9. Hojo Y, Ikeda U, Zhu Y, Okada M, Ueno S, Arakawa H, Fujikawa H, Katsuki T, Shimada K. Expression of vascular endothelial growth factor in patients with acute myocardial infarction. J Am Coll Cardiol 2000; 35: 968-973.
10. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM. Gene therapy for myocardial angiogenesis: Initial clinical results with direct myocardial injection of phVEGF(165) as sole therapy for myocardial ischemia. Circulation 1998; 98: 2800-2804.
11. Battler A, Scheinowitz M, Bor A, Hasdai D, Vered Z, Disegni E, Vardabloom N, Nass D, Ehgelberg S, Eldar M, Belkin M, Savion N. Intracoronary injection of basic fibroblast growth-factor engances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 1993; 22 (7): 2001-2006.
12. Harada K, Grossman W, Friedman M, Edelman ER, Prasad PV, Keighley CS, Manning WJ, Sellke FW, Simons M. Basic fibroblast growth-factor improves myocardial-function in chronically ischemic porcine hearts. J Clin Invest 1994; 94: 623-630.
13. Tabata Y. Tissue regeneration based on growth factor release. Tissue Eng 2003;9 Suppl 1:S5-15.
14. Arras M, Mollnau H, Strasser R, Wenz R, Ito WD, Schaper J, Schaper W. The delivery pf angiogenic factors to the heart by microsphere therapy. Nat Biotechnol 1998;16:159-162.
15. Lee JS, Feldman AM. Gene therapy for therapeutic myocardial andiogenesis: A promising synthesis of two emerging technologies. Nat Med 1998;4:739.
16. Schwarz ER, Speakmen MT, Patterson M, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial infarction model in the rat: angiogenesis and angioma formation. J Am Coll Cardiol 2000;35:1323.
17. Taniyama Y, Morishita R, Hiraoka K, et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: Molecular mechanism of delayed angiogenesis in diabetes. Circulation 2001;104:2344.
18. Kasahara H, Tanaka E, Fukuyama N, Sato E, et al. Biodegradable gelatin hydrogels potentiates the angiogenesis effect of FGF4 plasmid in rabbit hindlimb ischemia. J Am Coll Cardiol 2003;41:1056.
19. Bonadio J, Smiley E, Patil P, Goldstein S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 1999;5:753-759.
20. Chan SY, Li K, Piccotti JR, Louie MC, Judge TA, Turka LA, Eichwald EJ, Bishop DK. Tissue-specific consequences of the anti-adenoviral immune response: implications for cardiac transplants. Nat Med 1999;5:1143-1149.
21. Tabata, Y. Necessity of drug delivery dystems to tissue engineering. In: Park KD, Kwon IC, Yui N, Jeong SY, Park K, editors. Biomaterials and drug delivery toward new mellenium. Korea: Han Rim Won Publishing Co., 2000. p. 531-544.
22. Soker S, Machado M, Atala A, Systems for therapeutic angiogenesis in tissue engineering. World J Urol 2000□18:10-18.
23. Heldin CH, Usuki K, Miyazono K. Platelet-derived endothelial cell growth factor. J Cell Biochem 1991□47:208-210.
24. Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 2000□21:489-499.
25. Chapekar MS. Tissue engineering: challenges and opportunities. J Biomed Mater Res 2000□53:617-620.
26. Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neuro 2002□173:224-234.
27. Scott GI, Colligan PB, Ren BH, Ren J. Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Brit J Pharmacol 2001□134:1159-1165.
28. 恩斯特˙D˙普林曾柏格. 人參:永保青春和活力. 台北縣: 小薰書房, 1999.
29. Kitagawa I, Taniyama T, Yoshikawa M, Ikenishi Y, Nakagawa Y. Chemical studies on crude drug processing. VI. Chemical structures of malonyl-ginsenosides Rb1, Rb2, Rc, and Rd isolated from the root of Panax ginseng C. A. Meyer. Chem Pharm Bull 1989□37:2961-2970.
30. 陳榮福.中藥藥理學. 台北縣: 國立中國醫藥研究所, 1991. p. 113-264.
31. 張維懋, 王致權. 21世紀癌症新剋星:人參皂苷. 台北市: 愛克斯文化, 2002.
32. Liu M, Zhang JT. Effects of ginsenoside Rg1 on c-fos gene expression and cAMP levels in rat hippocampus. Zhongguo Yao Li Xue Bao/Acta Pharmacologica Sinica 1996□17:171-174.
33. Tong LS, Chao CY. Effects of ginsenoside Rg1 of Panax ginseng on mitosis in human blood lymphocytes in vitro. Am J Chinese Med 1980□8:254-267.
34. Nah SY, Oh S. Modulation of G protein alpha-subunit mRNA levels in discrete rat brain regions by cerebroventricular infusion of ginsenoside Rc and Rg1. Neurochem Res 2003□28:691-697.
35. Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 1997□133:135-40.
36. Losordo DW, Isner JM. Estrogen and angiogenesis: a review. Arterioscl Throm Vas 2001□21:6-12.
37. Cid MC, Schnaper HW, Kleinman HK. Estrogens and the vascular endothelium. Annals NY Acad Sci 2002□966:143-157.
38. Chan RY, Chen WF, Dong A, Guo D, Wong MS. Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng. J Clin Endocr Metab 2002□87:3691-3695.
39. Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM. Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation 2000;102:3098-3103.
40. Babaei S, Stewart DJ. Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model. Cardiovasc Res 2002□55:190-200.
41. 游林謙, “bFGF與新型血管新生因子(Ginsenoside Rg1與Re)的活性與穩定性之探討”, 國立清華大學碩士論文, 2005.
42. Huang YC, Chen CT, Chen SC, Lai PH, Liang HC, Chang Y, Yu LC, Sung HW. A Natural Compound (Ginsenoside Re) Isolated from Panax ginseng as a Novel Angiogenic Agent for Tissue Regeneration. Pharmaceutical Research 2005;22:636-646
43. Liang HC, Chen CT, Chang Y, Huang YC, Chen SC, Sung HW. A novel angiogenic agent (Ginsenoside Rg1) loaded in an acellular biological tissue regeneration. Tissue Eng (in press.)
44. Cremers H.F.M., Feijen J, Kwon G, Bae YH, Kim SW, Noteborn HPJM, McVie JG. Albumin–heparin microspheres as carriers for cytostatic agents, J Control Release 1990;11:167-179.
45. Tabata Y, Yamada K, Hong L, et al. Skull bone regeneration in primates in response to basic fibroblast growth factor. J Neurosurg 1999;91:851.
46. Fujimoto E, Mizoguchi A, Handa M, et al. Basic fibroblast growth factor promotes extension of regenerating axons of peripheral nerve: In vivo experiments using a Schwann cell basal lamina tube model. J Neurocytol 1997;26:522.
47. Hong L, Tabata Y, Miyamoto S, et al. Bone regeneration at rabbit skull defects treated with transforming growth factor-β1 incorporated into hydrogels with different levels of biodegradability. J Neurosurg 2000;9:315.
48. Ozeki M, Ishii T, Hirano Y, et al. Controlled release of hepatocyte growth factor from gelatin hydrogels based on hydrogel degradation. J Drug Target 2001;9:461.
49. Esposito E, Cortesi R, Nastruzzi C. Gelatin microspheres: Influence of preparation parameters and thermal treatment on chemico-physical and biopharmaceutical properties. Biomaterials 1996;17:2009-2020.
50. Illum L, Davis SS. Polymers in controlled drug delivery, Wright, Bristol, 73-86, 1987.
51. Iwakura A, Fujita M, Kataoka K, Tambara K, Sakakibara Y, Komeda M, Tabata Y. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels 2003;18:93-99.
52. Yamamoto T, Suto N, Okubo T, Mikuniya A, Hanada H, Yagihashi S, Fujita M, Okumura K. Intramyocardial delivery of basic fibroblast growth factor impregnated gelatin hydrogel microspheres enhances collateral circulation to infarcted canine myocardium. Jpn Circ J 2001; 65:439-444.
53. Sakakibara Y, Tambara K, Sakaguchi G, Lu F, Yamamoto M, Nishimura K, Tabata Y, Komeda M. Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardio-Thorac 2003;24:105-112.
54. Huang LLH, Sung HW, Tsai CC, Huang DM. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res. 1998;42:568-576.
55. Liang HC, Chang WH, Lin KJ, Sung HW. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. J Biomed Mater Res 2003;65A:271-282.
56. A.Veis. The Macromolecular Chemistry of Gelatin, Academic Press, New York, 1964. p.186-217.
57. Tabata Y, Ikada Y. Protein release from gelatin matrices. Adv Drug Deliver Rev 1998;31:287-301.
58. Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J Biomed Mater Res 1999;46:520-530.
59. Ugwoke MI, Kinget R. Influence of processing variables on the properties of gelatin microspheres prepared by emulsification solvent extraction technique. J Microencapsul 1998;15:273-281.
60. Silvestro L, Viano I, Macario M, Colangelo D, Montrucchio G, Panico S, Fantozzi R. Effects of heparin and its desulfated derivatives on leukocyte-endothelial adhesion. Seminar in Thrombosis and Hemostasis. 1994;20:254-258.
61. Dorogosz WJ, Lindgren SE. US Patent No. 5 413 960, 1995.
62. Tabata Y, Hijikata S, Ikada Y. Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Rel 1994;31:189-199.
63. Tabata Y, Hijikata S, Muniruzzaman, Ikada Y. Neovascularozatopm effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polymer Edn 1999;10:79-94.
64. Tabata Y, Ikada Y. Surfactant-free preparation of biodegradable hydrogel microspheres for protein release. J Bioact Compat Pol 1999;14:371-384.
65. Hagan S, Hiscott P, Sheridan CM, Wong D, Grierson I, McGalliard J. Effects of the matricellular protein SPARC on human retinal pigment epithelial cell behavior. Mol Vis 2003;9:87-92.
66. Wajih N, Sane DC. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood 2003□101:1857-63.
67. Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 1993;303:474-82.
68. Riss TL, Moravec RA. Comparison of MTT, XTT, and a novel tetrazolium compound MTS for in vitro proliferation and chemosensitivity assays. Mol Biol Cell 1992;3(suppl):184.
69. Chapekar MS. Tissue engineering: challenges and opportunities. J Biomed Mater Res 2000□53:617-20.
70. Miyagawa S, Sawa Y, Taketani S, Kawaguchi N, Nakamura T, Matsuura N, Matsuda H. Myocardial regeneration therapy for heart failure:Hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation 2002;105: 2556-2561.
71. Tomita S, Li RK, Weisel RD, Mickle DAG, Kim EJ, Sakai T, Jia ZQ. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100(supplⅡ): Ⅱ247-Ⅱ256.
72. Lee KY, Halberstadt CR, Holder WD. Breast reconstruction. In: Lanza RP, Langer R, Vacanti J. editors. Principle of tissue engineering, 2nd ed. San Diego: Academic, 2000. p. 409-423.