簡易檢索 / 詳目顯示

研究生: 林怡君
Lin, Yi-Chun
論文名稱: 利用成對游離腔測量混合輻射場中輻射劑量率
Radiation Dose Rate Measurement in a Mixed Radiation Field Using Paired Ionization Chambers
指導教授: 周文采
Chou, Wen-Tsae
江祥輝
Jiang, Shiang-Huei
劉淵豪
Liu, Yuan-Hao
口試委員: 江祥輝
周文采
張柏菁
陳拓榮
劉鴻鳴
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 317
中文關鍵詞: 成對游離腔方法蒙地卡羅計算混合場劑量硼中子捕獲治療清華水池式反應器
外文關鍵詞: Paired Ionization Chambers Method, Monte Carlo Calculation, Mixed Field Dosimetry, BNCT, THOR
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 游離腔為全球用於定義輻射場絕對劑量的偵檢器,而中子射束往往伴隨光子產生形成複雜的中子、光子混合場。一般游離腔對於光子和中子均會有響應,因此如何在混合場分別量測光子和中子劑量變成相當困難。國際上建議使用成對游離腔方法,利用兩支不同中子靈敏度的游離腔,依據其光子和中子相對響應不同,區分出混合場的光子和中子劑量。本研究目的為建立一套國內準確且完整的成對游離腔技術。
    本研究採用的成對游離腔一支為鎂壁填充氬氣(Mg(Ar)),另一支為A150組織等效塑膠壁填充甲烷為基組織等效氣體(TE(TE))游離腔。首先架構游離腔幾何模型,詳細分析討論其響應,進行校正並補齊劑量議定書中所缺乏包含射束品質轉換因子的各項參數,修訂成對游離腔劑量推導數學式,修正活化汙染對游離腔訊號的影響,利用蒙地卡羅方法直接計算游離腔靈敏度。本研究先經由箔片活化分析反應率驗證清華水池式反應器(THOR)硼中子捕獲治療(BNCT)出口面中子射源項後,接著,以成對游離腔實際度量射束在空氣中和假體不同深度位置的光子和中子劑量成份,並與計算結果相比較,本論文同時也對測量結果進行不確定度評估。
    關於TE(TE)游離腔的能依響應,蒙地卡羅程式MCNP與其他EGSnrc、FLUKA和GEANT4的計算結果,以及7個光子場(Co-60, keV和MeV等級X射線)和2個MeV等級電子場的量測結果相當一致,Mg(Ar)游離腔MCNP計算結果在低能光子出現響應低估的較大偏差,但對於氫捕獲作用2.2 MeV光子為主的硼中子捕獲治療射束,可以適用。觀察由2009至2011年的歷年校正數據,游離腔響應可能發生變動,顯示定期校正的重要性與必須性。本論文計算出的兩支游離腔個別的能量依存光子和中子靈敏度,可以提供混合場量測時,計算量測位置克馬加權光子和中子靈敏度使用。利用成對游離腔測量BNCT射束在假體中之光子和中子劑量過程中,採用蒙地卡羅計算之光子和中子靈敏度較引用文獻建議之靈敏度數據,所得中子劑量量測值與針對射源和假體的計算值,吻合情況有高達十幾%的改善。此外,在本論文研究過程中,我們也完成了下列幾項研究應用:(1)利用Mg(Ar)游離腔搭配不同厚度增建帽,對BNCT射束出口光子射源項能量分布進行調整;(2)同時測量THOR和歐盟Petten聯合研究中心BNCT射束中子和光子劑量成份並進行比對;以及(3)利用成對游離腔執行每次BNCT臨床試驗射束品質管制和品質保證。 


    Neutron beams adopted in radiobiology and radiotherapy always accompany secondary photons and charged particlesm which lead to a need of mixed radiation dosimetry. Paired ionization chambers method is usually used for dose measurement in mixed neutron/photon fields to separate the photon and neutron dose components which have different relative biological effectiveness. Dosimetry as one of beam characteristics is important because of the correlation with patient safety and radiation protection. Although this technique has been widely used for about 50 years, parameters and corrections involved in the dose derivation are still problematic and need a further and thorough study. Therefore, the purpose of this study is to establish a more accurate, complete and high quality paired ionization chambers detection system, and used in the boron neutron capture therapy (BNCT) beam at the Tsing Hua Open-pool Reactor (THOR).
    A magnesium chamber with argon gas (Mg(Ar)) and the other A150 tissue-equivalent plastic chamber with tissue-equivalent gas (TE(TE)) were used to determine the photon and neutron doses. The contents of this Ph. D. thesis work are consist of the following items: (A) establishment of verified chamber models and detailed response analysis including energy, angular and thickness dependent dose responses; (B) calibration and calculation of the lack parameters such as beam conversion factor according to the dosimetry protocol principle; (C) modification of dose derivation, activation contamination correction and determination of neutron and gamma-ray sensitivities; (D) neutron source verification based on activation detector reaction rates; (E) neutron and gamma-ray spectra calculation; and (F) measurements and verifications of the neutron and gamma-ray dose rates and corresponding uncertainty evaluation for measured values.
    In this study, the MCNP based TE(TE) chamber model, comparing to EGSnrc, FLUKA, GEANT4 and measurement of 7 realistic photon fields (60Co, keV and MeV level X-rays) as well as two MeV level electron fields, had perfect outcome. In the low energy region, the MCNP based Mg(Ar) chamber underestimated the detector responses, but it is still the most ideal candidate regarding the application of BNCT dosimetry where the hydrogen capture 2.2 MeV photons are dominant.The energy dependent neutron and photon sensitivities of two chambers by using the modified dose derivation were also investigated. The differences of neutron doses between calculations and measurements reduced ~10 percents based on the Monte Carlo calculated sensitivities while compared to those from paper citions. Finally, results of this study were applied to beam photon spectrum adjustment from measurements of Mg(Ar) chamber with different thickness build up caps, inter-center dose comparison between BNCT facilities at the THOR and High Flux Reactor, and beam quality control & quality assurance in the of the THOR BNCT clinical trials.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 第一章 序論 1 1.1. 前言 1 1.2. 成對游離腔技術 2 1.2.1. 常見物質和游離腔材質組成與截面資料庫 4 1.2.2. 入射粒子與游離腔物質的作用 6 1.2.3. 物質中的游離與W值 14 1.2.4. 劑量標準與游離腔中子劑量 17 1.3. 清華大學的硼中子捕獲治療 20 1.3.1. BNCT簡介及沿革 20 1.3.2. THOR BNCT中子源 22 1.3.3. 中子監測系統 25 1.3.4. BNCT的物理劑量 26 1.4. 蒙地卡羅方法 27 1.5. 成對游離腔量測系統 29 1.6. 研究目的與研究架構 33 第二章 成對游離腔的輻射響應與模型研究 36 2.1. 前言 36 2.2. 原理與研究架構 37 2.3. 輻射場簡介 40 2.4. 蒙地卡羅程式介紹 48 2.5. 游離腔計算模型介紹 54 2.6. MCNP材料參數設定及 ESTEP最佳化研究 56 2.7. 游離腔能量與壁厚響應函數計算結果 65 2.7.1. 光子響應函數 65 2.7.2. 電子響應函數與劑量軌跡 73 2.7.3. 中子響應函數 77 2.8. 壁厚依存之游離腔響應的量測與計算結果比較 82 2.9. 光子訊號角度分布 84 2.10. 游離與W值評估 89 2.11. 校正光子場和電子場的量測與計算結果比較 97 第三章 游離腔的校正與量測 100 3.1. 游離腔劑量方法 100 3.2. 技術規範與文獻回顧—劑量議定書 103 3.3. 校正與量測系統原理 115 3.3.1. 游離電流或電荷的修正 115 3.3.2. 量測環境修正因子(溫壓修正因子與濕度修正因子) 116 3.3.3. 系統設計修正因子 (電量計校正因子、再結合修正因子與極性修正因子) 118 3.3.4. 射束通率修正因子(監測強度修正與腔壁修正因子) 121 3.3.5. 干擾因子和射束品質轉換因子 123 3.4. 成對游離腔空氣克馬與水吸收劑量校正因子 125 3.5. 成對游離腔校正場修正因子 136 3.6. 成對游離腔射束品質轉換因子 141 3.7. 充氣式游離腔氣體流速實驗 145 第四章 利用成對游離腔測量BNCT混合輻射場中輻射劑量率 147 4.1. BNCT混合場射束品質與劑量之物理參數 148 4.1.1. BNCT混合場射源特性 148 4.1.2. 混合場光子類別與捕獲作用資料 153 4.1.3. 劑量與作用係數比值 157 4.1.4. 帶電粒子的游離與W值 163 4.2. 傳統的成對游離腔劑量方法 167 4.2.1. ICRU之游離腔中子場劑量原理推導 168 4.2.2. 研究建議之游離腔中子場劑量推導 172 4.2.3. 游離訊號項 175 4.3. 修訂的成對游離腔劑量方法 177 4.3.1. 金屬游離腔中子不敏度評估 179 4.3.2. 室散射的修正 188 4.3.3. 成對游離腔劑量公式推導 189 4.4. 游離腔靈敏度的蒙地卡羅計算 192 4.5. 中子射源項驗證 196 4.5.1. 儀器中子活化分析 196 4.5.2. 活化反應式與反應率 197 4.6. 箔片活化分析量測系統 202 4.6.1. 活化偵檢器 203 4.6.2. 加馬射線能譜分析系統 204 4.6.3. 能量校正與效率校正 208 第五章 利用成對游離腔測量混合輻射場中輻射劑量率結果與討論 213 5.1. 實驗設備與量測和計算條件 213 5.2. THOR BNCT射束輸出: 出口面射源計算量測位置的空間能譜 214 5.3. 箔片反應率驗證 217 5.4. 量測位置游離腔通率與能譜分析 219 5.4.1. 中子、光子和電子深度位置空腔通率 219 5.4.2. 游離腔能譜 224 5.5. 游離訊號項 234 5.5.1. 反應器功率與量測電流的關係 236 5.5.2. 假體尺寸與量測電流的關係 238 5.6. 靈敏度能量依存性評估 238 5.7. 空氣中與假體深度位置的劑量成份 245 5.7.1. 劑量參數與修正 245 5.7.2. 氣體劑量成份分析 247 5.7.3. W值與游離電流成分分析 249 5.7.4. 量測位置靈敏度評估 253 5.7.5. 空氣中光子與中子劑量成份 255 5.7.6. 光子與中子深度劑量曲線 256 5.8. 不確定度評估 261 5.9. THOR BNCT的射束品質參數 276 第六章 成對游離腔於中子光子混合場之其他研究與應用成果 279 6.1 利用鎂游離腔評估混合場光子能譜 279 6.2 硼中子捕獲治療射束劑量國際比對 287 6.3 金屬材質做為光子劑量游離腔的活化汙染分析 297 6.4 清大硼中子捕獲治療之臨床射束品質管制與品質保證 (QC/QA) 304 第七章 結論與未來工作 312 參考文獻 316

    1. IAEA, Current Status of Neutron Capture Therapy. IAEA-TECDOC-1223, Vienna, (2001).
    2. 江祥輝, 國立清華大學水池式反應爐改建為硼中子捕獲治療(BNCT)專用核反應爐研究計畫成果報告NSC91-2745-P-007-001, 行政院國家科學委員會, (2002).
    3. Yuan-Hao Liu, Ph. D. Thesis: Neutronic Characterization of an Epithermal Neutron Beam in Boron Neutron Capture Therapy. Shiang-Huei Jiang, Department of Engineer and System Science, National Tsing Hua University, (2009).
    4. Chih-Hao Chang, Master Thesis: The Measurement of Neutron Fluence Rate for Tsing Hua Open-pool Reactor Boron Neutron Capture Therapy Beam. Shiang-Huei Jiang, Detartment of Engineer and System Science, National Tsing Hua University, (2007).
    5. Y. W. H. Liu, T. T. Huang, S. H. Jiang, H. M. Liu, Renovation of Epithermal Neutron Beam for BNCT at THOR. Applied Radiation and Isotopes, 61: p. 1039-1043, (2004).
    6. Yuan-Hao Liu, BEAM-INAA-104超熱中子束通率量測原理, 清華水池式反應器硼中子捕獲治療設施之標準操作程序書— 超熱中子射束驗證與測量, (2006).
    7. Editors: Wolfgang A. G. Sauerwein, Wolfgang A. G. Sauerwein, and Yoshinobu Nakagawa, Neutron Capture Therapy: Principles and Applications: Springer Heidelberg New York Dordrecht London, (2012).
    8. ICRU Report 45, Clinical Neutron Dosimetry Part I: Determination of Absorbed Dose in a Patient Treated by External Beams of Fast Neutrons, International Commission on Radiation Units and Measurements, Bethesda, Maryland, U.S.A., (1989).
    9. J.J. Broerse, B. J. Mijnheer, and J.R. Williams, Br. J. Radiol.: p. 882, (1981).
    10. ICRU Report 26, Neutron Dosimetry for Biology and Medicine, International Commission on Radiation Units and Measurements, Washington, D. C., U.S.A., (1977).
    11. J. Zotetlief, D. Schlegel-Bickmann, H. Schraube, and G. Dietze, Phys. Med. Biol., 31: p. 1339, (1986).
    12. Dan T. L. Jones, Dosimetry for fast neutron and proton radiotherapy. IAEA/ICTP Trieste Workshops 2007, workshop on nuclear data for science and technnology: Medical Applications, (2007).
    13. ICRU Report 44, Tissue Substitutes in Radiation Dosimetry and Measurement, International Commission on Radiation Units and Measurements, Bethesda, Maryland, U.S.A., (1989).
    14. James F. Ziegler, M. D. Ziegler, J. P. Biersack,, SRIM-The stopping and Range of Ions in Matter. Nuclear Instruments and Methods in Physics Research Section B, 268(11-12): p. 1818-1823, (2010).
    15. Frank H. Attix, Introduction to Pariological Physics and Radiation Dosimetry: Wiley-Interscience, (1986).
    16. ICRU Report 46, Photon, Electron, Proton and Neutron Interaction Data for Body Tissue, International Commission on Radiation Units and Measurements, Bethesda, Maryland, U.S.A., (1992).
    17. R. S. Caswell and J. J. Coyne, Radiation Reseaech, 83: p. 217-254, (1980).
    18. Leon J. Goodman and Joseph Coyne, Wn and Neutron Kerma for Methane-Based Tissue-Equivalent Gas. Radiation Research, 82: p. 13-26, (1980).
    19. ICRU Report 31, Average Energy Required to Produced an Ion Pair, International Commission on Radiation Units and Measurements, Washington, D.C., U.S.A., (1979).
    20. R. L. Platzman, Total Ionization in Gases by High-Energy Particles: An Appraisal of Our Understanding. Applied Radiation and Isotopes, 10: p. 116-127, (1961).
    21. ENDF/B-Ⅵ Library. ENDF/B-Ⅵ neutron data form T-2 Nuclear Information Service <http://t2.lanl.gov/data/data.html>.
    22. Jeffery A. Coderre and Gerard M. Morris, The Radiation Biology of Boron Neutron Capture Therapy. Review. Radiation Research, 151: p. 1-18, (1999).
    23. A. H. Soloway, H. Hatanaka, M. A. Davis, Penetration of Brain and Brain Tumor. VII. Tumor-binding Sulfhydryl Boron Compounds. Journal of Medicinal Chermistry, 10: p. 714-717, (1967).
    24. H. Hatanaka and Y. Nakagawa, Clinical Results of Long-Surviving Brain Tumor Patients Who Underwent Boron Neutron Capture Therapy. International Journal Radiation Oncology Biology Physics, 28(5): p. 1061-1066, (1994).
    25. H. Hatanaka, et al., Clinical Experience of Boron Neutron Capture Therapy for Gliomas - A Comparison with Conventional Chemo-Immuno-Radiotherapy. H. Hatanaka (ed.) Boron Neutron Capture Therapy for Tumors, Niigata, Japan: Nishimura Co., Ltd., (1986).
    26. Pi-En Tsai, Master Thesis: Characterization Study of a BNCT Neutron Beam Using Indirect Neutron Radiography. Detartment of Engineer and System Science, National Tsing Hua University, (2009).
    27. Yuan-Hao Liu, Sander Nievaart, Pi-En Tsai, Hong-Ming Liu, Ray Moss, and Shiang-Huei Jiang, Coarse-Scaling Adjustment of Fine-Group Neutron Spectra for Epithermal Neutron Beams in BNCT using Multiple Activation Detectors. Nuclear Instruments and Methods in Physics Research A, 598: p. 764-773, (2009).
    28. Yuan-Hao Liu, BEAM-NMS-201超熱中子束即時監測系統之系統說明, 清華水池式反應器硼中子捕獲治療設施之標準操作程序書— 超熱中子射束驗證與測量, (2006).
    29. W. P. Voorbraak, F. Stecher Rasmussen, and R. Huiskamp, Recommendations for the Dosimetry of Boron Neutron Capture Therapy (BNCT), NRG, Petten, The Netherlands, (2003).
    30. Jouni Uusi-Simola, Ph. D. Thesis: Finnish Dosimetric Practice for Epithermal Neutron Beam Dosimetry in Boron Neutron Capture Therapy. Department of Physics Faculty of Science, University of Helsinki, (2009).
    31. Esam M. A. Hussein, Monte Carlo Particle Transport with the MCNP Code, E. Hussein, Department of Mechanical Engineering, University of New Brunswick: Canada, (2011).
    32. Yi-Chun Lin and Yuan-Hao Liu, BEAM-ION-301超熱中子束混合場輻射強度與品質查驗, 清華水池式反應器硼中子捕獲治療設施之標準操作程序書— 超熱中子射束驗證與測量, (2010).
    33. A. Roca, V. A. Nievaart, R. L. Moss, F. Stecher-Rasmussen and N. V. Zamfir, Validating a MCNPX Model of Mg(Ar) and TE(TE) Ionisation Chambers Exposed to 60Co Gamma Rays. Radiation Protection Dosimetry, 129: p. 365-371, (2008).
    34. I. Kawrakow and D.W.O. Rogers, The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport, NRCC PIRS-701, (2003).
    35. A. Fasso, A. Ferrari, J. Ranft, and P. R. Sala, FLUKA: a Multi-Particle Transport Code. CERN-2005-10, INFN/TC_05/11, SLAC-R-773, (2005).
    36. G. Battistoni, S. Muraro, P. R. Sala, F. Cerutti, A. Ferrari, S. Roesler, and A. Fasso'J. Ranft, The FLUKA Code: Description and Benchmarking, in: Proceedings of the Hadronic Shower Simulation Workshop 2006. in: Proceedings of the Hadronic Shower Simulation Workshop 2006, Fermilab, September 2006, M. Albrow, R. Raja (Eds.), AIP Conference Proceeding 896, (2007).
    37. S. Agostinelli, et al., Geant4—a simulation toolkit. Nucl. Instr. and Meth. Phys. Res. Sect. A, 506: p. 250-303, (2003).
    38. X-5 Monte Carlo Team, MCNP—A General Monte Carlo N-Particle Transport Code Version 5, LA-UR-03-1987. Los Alamos National Laboratory, University of California, (2005).
    39. Denise B. Pelowitz, MCNPXTM User's Manual Version 2.6.0, Los Alamos National Laboratory Report LA-CP-07-1473. Los Alamos National Security, LLC., (2008).
    40. John Allison, et al., Geant4 Developments and Applications. Nuclear Science, IEEE Transactions on, 53(1): p. 270-278, (2006).
    41. S. H. Su, J. Y. Lin, C. L. Chen, S. J. Chen, J. H. Lee and W. S. Hwang, Air Kerma Rate Measurement for 137Cs and 60Co Using the Spherical Graphite Air Ionization Chamber (Re-evaluation of the measurement parameters of the graphite air ionization chamber for the changes of the mass stopping power and the wall correction), INER-2347 & BSMI-INER-001-T106(92), National Radiation Standard Laboratory/Institute of Nuclear Energy Research, Taiwan, (2003).
    42. Y. C. Lin and S. H. Su, Wall Effect of INER's Air-Kerma Primary Standard for 60Co with EGSnrc, INER-5084, National Radiation Standard Laboratory/Institute of Nuclear Energy Research, Taiwan, (2007).
    43. Y. C. Lin, S. H. Su, and C. H. Chu, Air Kerma Rate Measurement and Calibration System for Computed Tomography Scan Dosimetry, INER-5757, National Radiation Standard Laboratory/Institute of Nuclear Energy Research, Taiwan, (2008).
    44. C. C. Lee, A. M. Chen, C. J. Tung, and T. C. Chao, Monte Carlo Simulation of Small Field Electron Beams for Small Animal Irradiation. Radiation Measurements, 46(12): p. 2003-5, (2011).
    45. Varian Oncology System, "Monte Carlo project", Confidential information to National Tsing Hua University. (1999).
    46. T. C. Chao, A.M.C., S. J. Tu, C. J. Tung, J. H. Hong, and C. C. Lee, Evaluation of 6 and 18 MeV Electron Beams for Small Animal Irradiation. Phys. Med. Biol., 54: p. 5847-5860, (2009).
    47. S. W. Wu, T. C. Chao, C. J. Tung, M. H. Lin, and C. C. Lee, MLC mediated beam hardening effects in IMRT. Radiation Measurements, (2011).
    48. Che-Hsing Chu, Master Thesis: Dosimetry for small photon fields using normoxic polymer gel dosimeter. Chuan-Jong Tung, Chung-Chi Lee, and Tsi-Chian Chao, Dept. of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, (2007).
    49. Ai-Mei Chen, Master Thesis: Simulation of Electron Beams in Small Field Using BEAM/EGS4 Monte Carlo Code. Dept. of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, (2008).
    50. P. Wootton, et al., AAPM Report NO. 7, Task Group No. 18, Protocol for Neutron Beam Dosimetry, Fast Neutron Beam Dosimetry Physics Radiation Therapy Committee, American Association of Physicists in Medicine. American Institute of Physics, New York, U.S.A., (1980).
    51. J. J. Broerse, B. J. Mijnheer, and J. R. Williams, European Protocol for Neautron Dosimetry for External Beam Therapy. British Journal of Radiology, 54: p. 884-898, (1981).
    52. Indrin J. Chetty, et al., Report of the AAPM TASK Group No. 105: Issues Associated with Clinical Implemention of Monte Carlo-based Photon and Electron External Beam Treatment Planning. Med. Phys., 34(12), (2007).
    53. Yi-Chun Lin, et al., Simulation of the Mg(Ar) Ionization Chamber Currents by Different Monte Carlo Codes in Benchmark Gamma Fields. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 652(1): p. 559-563, (2011).
    54. Y. C. Lin, S. H. Su, and C. H. Chu, Air Kerma Rate Measurement and Calibration System for Computed Tomography Scan Dosimetry, INER-5757, National Radiation Standard Laboratory/Institute of Nuclear Energy Research, Taiwan, (2008).
    55. D. W. O. Rogers, B. Walters, and I. Kawrakow, BEAMnrc Users Manual, NRCC PIRS-0509(A)revL, Canada, (2011).
    56. M. J. Berger, Monte Carlo Calculation of the penetration and diffusion of fast charged particles, eds.: B. Alder, S. Fernbach, and M. Rotenberg. Methods in Computational Physics, Physics, Academic, New York, 1: p. 135-215, (1963).
    57. I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med. Phys., 27(3), (2000).
    58. I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport. II. Application to ion chamber response simulations. Med. Phys., 27(3), (2000).
    59. H. Grady Hughes, Improved logic for sampling landau straggling in MCNP5, in: Proceedings of the American Nuclear Society 2005 Mathratics and Computation Topic Meeting, Los Alamos National Laboratory Report la-ur-05-4404, (2005).
    60. Ernesto Mainegra-Hing, User Manual for egs inprz, a GUI for the NRC RZ user-codes. NRCC Report PIRS-801(RevA), (2005).
    61. I. Kawrakow, E. Mainegra-Hing, and D. W. O. Rogers, EGSnrcMP: the multi-platform environment for EGSnrc, NRCC Report PIRS-877, (2004).
    62. Ann. G. Jaffe, 303 (1913). A Conventient Application was Made by H. Zanstra. Physik, 2: p. 817, (1935).
    63. Y. H. Liu, et al., The Activation Contamination in the Metal-Based Ionization Chambers as Gamma Dosimeters in the Mixed Field Dosimetry. Radiation Measurements, 45: p. 1427, (2010).
    64. L. V. Spencer and F. H. Attix, A theory of cavity ionization. Radiat. Res., 3: p. 239-254, (1955).
    65. H. Zanstra, A conventient application was made by H. Zanstra. Physik, 2: p. 817, (1935).
    66. T. E. Bortner and G. S. Hurst, Phys. Rev., 93: p. 1236, (1954).
    67. J. A. Phipps, J. W. Boring, and R. A. Lowry, Total Ionization in Argon by Heavy Ions of Energies 8 to 100 keV.
    68. W. P. Jesse and J. Sadauskis, Phys. Rev., 88: p. 1120, (1952).
    69. G.F. Knoll, Radiation Detection and Measurement, 3rd ed. New York: John Wiley & Sons Inc., (2000).
    70. L. V. Spencer and F. H. Attix, A cavity ionization theory including the effects of energetic secondary electrons. Radiology, 64(1): p. 113, (1955).
    71. Eds:E. B. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students, ed. IAEA, (2005).
    72. American Association of Physicists in Medicine, AAPM Task Group 21, A Protocol for Determination of Absorbed Dose from High Energy Photon and Electron Beams. Med. Phys., 10: p. 741, (1983).
    73. P. R. Almond, et al., AAPM Task Group 51, AAPM's TG-51 Protocol for Clinical Reference Dosimetry of High-Energy Photon and Electron Beams. Med. Phys., 26(9): p. 1847-1870, (1999).
    74. D. I. Thwaites, et al., The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 meV based on an absorbed dose to water calibration. Phys. Med. Biol., 48(18): p. 2929-2970, (2003).
    75. IAEA, Technical Reports Series TRS-398, Absorbed Dose Determination in External Beam Radiotherapy. An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water. International Atomic Energy Agency, Vienna, (2000, rev. 2006).
    76. I. H. Ferreira, et al., Perturbation Corrections for Flat and Thimble-Type Cylindrical Standard Ionization Chambers for 60Co Gamma Rays: Monte Carlo Calculations. (1998).
    77. IEC 60731 Report, Medical Electrical Equipment —Dosimeters with Ionization Chambers as Used in Radiotherapy. The European Standard EN 60731:1997, International Electro Technical Commission, (1997).
    78. J. W. Boag, Ionization chambers. Radiation Dosimetry Volume II, (1966).
    79. J. W. Boag, Ionization Measurements at Very High Intensities: I. Pulsed Radiation Beams. Brit. J. Radiol., 23: p. 601, (1950).
    80. D. W. O. Rogers and J. Treurmiet, Monte Carlo Calculated Wall and Axial Non-Uniformity Corrections for Primary Standards of Air Kerma, in CCRI(I)/99-26, (1999).
    81. Stephen M. Seltzer and J. Paul M. Bergstrom, Changes in the U.S. Primary Standards for the Air Kerma From Gamma-Ray Beams. J. Res. Natl. Stand. Technol., 108: p. 359, (2003).
    82. IAEA, Technical Report Series, TRS-277, Absorbed Dose Determination in Photon and Electron Beams: An Adaptation of the IAEA International Codes of Practice. International Atomic Energy Agency, Vienna, (1987).
    83. P. Andreo, J. P. Seuntjrns, and E. B. Podgorsak, Chapter 9 Calibration of Photon and Electron Beams, in Radiation Oncology Physics: A Handbook for Teachers and Students, E. B. Podgorsak, IAEA, (2005).
    84. F. W. Wittkämper, et al., Phys. Med. Biol., 36: p. 1639-1652, (1991).
    85. M. J. Berger and J. H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer, Report No. NBSIR 87-3597. Government Printing Office, Washington, D. C., U.S.A., (1987).
    86. H. Kubo, L. J. Kent, and G. Krithivas, Determinations of Ngas and Prepl factors from commercially available parallel-plate chambers: AAPM Task Group 21 protocol. Med. Phys., 13(6): p. 908-912, (1986).
    87. S. Endo, et al., Calculation of the Neutron W Value for Neutron Dosimetry Below the MeV Energy Region. Phys. Med. Biol., 45: p. 947-953, (2000).
    88. J. T. M. Jansen, et al., Relative Neutron Sensitivity of Tissue-Equivalent Ionsition Chambers in an Epithermal Neutron Beam for Boron Neutron Capture Therapy. Radiation Protection Dosimetry, 70: p. 27-32, (1997).
    89. G. C. Taylor, et al., Neutron W Values in Methane-Based Tissue-Equivalent Gas Up to 60 MeV. Nuclear Technology, Radiation Protection Dosimetry, 61: p. 285-290, (1995).
    90. M. Makarewicz and G. Burger, Wn for Methane-Based TE Gas and Carbon Dioxide and Wn and Gas-to-Wall Dose Conversion Factors for TE/TE Cavities. EUR 9762, 275-286, (1985).
    91. B. R. L. Siebert, et al., New Analytical Representation of W Values for Protons in an Methane-Based Tissue-Equivalent Gas. Prot. Dosim., 52: p. 123-127, (1994).
    92. Deniel Kirby, Ph. D Thesis: Radiation Dosimetry of Conventional and Laser-Driven Particle Beams. College of Engineering and Physical Sciences, University of Birmingham, (2011).
    93. Zoetelief et al, Effect of finite size of ion chambers used for neutron dosimetry, Phys. Med. Biol. 25:p. 1121, (1980) and Displacement correction factors for spherical ion chambers in phantoms irradiated with neutrons of different energies, Phys. Med. Biol. 26:p. 513, (1981).
    94. C. P. J. Raaijmakers, et al., Determination of Dose Components in Phantoms Irradiated with an Epithermal Neutron Beam for Boron Neutron Capture Therapy. Med. Phys., 22: p. 321-329, (1995).
    95. C. P. J. Raaijmakers, et al., The Neutron Sensitivity of Dosimeters Applied to Boron Neutron Capture Therapy. Med. Phys., 23: p. 1581-1589, (1996).
    96. W. P. Voorbraak, Recommendations for the Dosimetry of Boron Neutron Capture Therapy (BNCT). NRG: Petten, (2003).
    97. M. B. Chadwick, P. Oblozinsky, and M. Herman, ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nucl. Data Sheets 107: p. 2931-3060, (2006).
    98. E. C. Crittenden, The Beta-Ray Spectra of Mg27, Cu62 and the Nuclear Isomers of Rh104. The Physical Review, 56(8): p. 709, (1939).
    99. Ming-Chen Hsiao, Yuan-Hao Liu, and Shiang-Huei Jiang, Computational Study of Room Scattering Influence in the THOR BNCT Treatment Room. in: Proceeding ICNCT-15 Conference, ARI, (2012).
    100. A. Kosunen, et al., Twin Ionisation Chambers for Dose Determinations in Phantom in an Epithermal Neutron Beam. Radiation Protection Dosimetry, Nuclear Technology, 81(3): p. 187-194, (1999).
    101. K. J. Riley, P. J. Binns, and O. K. Harling, Performance Characteristics of the MIT Fission Converter Based Epithermal Neutron Beam. Phys. Med. Biol., 48: p. 943-958, (2003).
    102. ISO, Guide to the expression of uncertainty in measurement. ISO Guide, International Organization for Standardization. ISO Guide, International Organization for Standardization, (1995).
    103. C. J. Tung, et al., Characteristics of the new THOR epithermal neutron beam for BNCT. Applied Radiation and Isotopes, 61(5): p. 861-864, (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE