簡易檢索 / 詳目顯示

研究生: 田博晏
Tien, Po-Yen
論文名稱: 小鼠衍生Alisertib抗藥性人類小細胞肺癌之分子圖譜分析
Molecular profiling of Mouse-derived Alisertib Resistant Small Cell Lung Cancer Cells
指導教授: 陳炯東
Chen, Chiung-Tong
周裕珽
Chou, Yu-Ting
口試委員: 馬念涵
Ma, Nianhan
劉玉麗
Liu, Yu-Li
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 105
中文關鍵詞: 小細胞肺癌極光激酶A上皮細胞間質轉化異質性抗藥性MYC
外文關鍵詞: Alisertib, DBPR728, MYC, drug resistance, Aurora kinase
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小細胞肺癌 (SCLC, small cell lung cancer)是一種侵襲性強且預後不佳的惡性腫瘤,具有極高的增殖和轉移速率。該癌症類型顯示出高度異質性,且在發展出抗藥性後容易復發,導致治療選擇非常有限。因此,迫切需要開發有效的SCLC治療策略。
    小細胞肺癌具有MYC基因高表現以及極光激酶A(AURKA)的高度活化特性。先前研究顯示,AURKA 能與 MYC 家族結合並穩定其功能;因此,抑制AURKA,使其構型改變降低 MYC 的穩定性,這讓AURKA成為SCLC 治療中一個理想目標。Alisertib 和 DBPR728 分別由Puma Biotechnology和國家衛生研究院開發,是AURKA抑制劑,是治療 SCLC 的重要候選藥物。然而,針對這些藥物的抗藥性機制仍有待進一步闡明。
    為了探討 SCLC 對 Alisertib 和 DBPR728 的抗性機制,我們建立了具有藥物抗性的體內小鼠異種移植人類 SCLC 細胞株模型。我們通過 RNA 定序、生物資訊分析和形態學觀察,全面解析了抗性細胞的分子和表型變化。研究結果顯示,具藥物抗性的細胞由神經內分泌型的上皮樣表型轉變為非神經內分泌型的間充質樣細胞,並伴隨 EMT 標誌物(如 Slug、Snail 和 Vimentin)表現的顯著上調。此外,我們發現 Wnt 信號通路的高度活化(包括 β-catenin、LRP6 和 TCF7L2 等關鍵組分的上調)可能是驅動 EMT 的潛在機制,並在藥物抗性發展中起到重要的作用。
    本研究的結果揭示了 SCLC 中 AURKA 抑制劑抗藥性的轉錄組分子機制,並提供了克服抗藥性的潛在治療靶點,鑑定出具有前景的靶點,我們的目標是推進有效治療 SCLC 的發展,解決減少復發和改善患者預後的關鍵重要需求。


    SCLC (small cell lung cancer) is an aggressive malignancy with a poor prognosis, characterized by extremely high rates of proliferation and metastasis. This cancer type demonstrates high heterogeneity and is prone to relapse following the development of drug resistance, leaving limited treatment options. Therefore, effective therapeutic strategies for SCLC are urgently needed. SCLC exhibits high MYC expression and active Aurora kinase A (AURKA) activity. Previous studies have shown that AURKA binds to and stabilizes the MYC family; targeting AURKA destabilizes MYC, making it a suitable choice for SCLC treatment. Alisertib and DBPR728 are AURKA inhibitors developed by Takada (2015) and Puma Biotechnology (2022) and the National Health Research Institutes, respectively, which act as MYC degraders for treating SCLC. However, the mechanisms underlying resistance to these agents of SCLC remain unclear. To investigate the resistance mechanisms of Alisertib and DBPR728 in SCLC, we established in vivo human SCLC models resistant to these drugs. We characterized the molecular and phenotypic changes in resistant cells through RNA sequencing, bioinformatic analyses, and morphological observations. Our findings reveal that drug-resistant sublines undergo a transition from a neuroendocrine, epithelial-like phenotype to a non-neuroendocrine, mesenchymal-like state, accompanied by increased expression of epithelial-to-mesenchymal transition (EMT) markers, such as Slug, Snail, and Vimentin. Furthermore, we identified hyperactivation of the Wnt signaling pathway, including upregulation of key components such as β-catenin, LRP6, and TCF7L2, as a potential driver of EMT, critical for promoting drug resistance. Our study sheds light on the molecular mechanisms of AURKA inhibitor resistance of SCLC at the transcriptome level and provides potential therapeutic targets to overcome drug resistance. By identifying promising targets, we aim to advance the development of effective treatments for SCLC, addressing the critical need to reduce relapse and improve patient outcomes.

    Table of Contents 摘要 4 ABSTRACT 6 Acknowledgments 8 List of Abbreviations 9 Introduction 10 Materials and Methods 13 Cell Culture 13 Establish human SCLC in xenograft animal model 14 Generate drug-resistant in animal model 14 Induction of Stronger Drug Resistance in the Animal Model 15 Xenograft-derived Primary Culture 16 Half Maximal Inhibitory Concentration 18 Real-time PCR 21 Cell Doubling Time Assay 23 RNA sequencing 25 Micro-Western Array Assay 26 Statistical Analysis 30 Bioinformatic Analysis 31 Results 33 Established Drug-Resistant Human SCLC Xenograft Tumors in Mice 33 Isolated Single-Clone Sublines Derived from the Xenograft Tumors 40 Level of Resistance and SCLC Subtype of Single-Clone Sublines Derived from the Xenograft Tumors 41 Drug Resistance Associated Genes Expression in Single-Clone Sublines Derived from Xenograft Tumor 44 Significant Differentially Expressed Genes in Drug-Resistant Single-Clone Sublines Derived from Xenograft Tumors 46 Upregulated Genes across the Single-Clone Sublines Derived from the Xenograft Tumors 50 Putative Biological Pathways Associated with AURKAi Resistance Identified in Resistant Single-Clone Sublines from the Xenograft Tumors 51 Discussion 54 Figures 57 Figure 1A 57 Figure 1B 58 Figure 1C 59 Figure 1D 60 Figure 1 61 Figure 2A 63 Figure 2B 63 Figure 2C 63 Figure 2D 64 Figure 2 65 Figure 3A 67 Figure 3B 67 Figure 3C 68 Figure 3D 68 Figure 3E 68 Figure 3F 69 Figure 3G 69 Figure 3H 69 Figure 4A 74 Figure 4B 74 Figure 4C 76 Figure 4D 77 Figure 4D 78 Figure 4E 79 Figure 4 80 Figure 5A 84 Figure 5B 84 Figure 5C 85 Figure 5D 85 Figure 5E 86 Figure 5 87 References 91 Appendix 97 Appendix Figures 103

    1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48.
    2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49.
    3. Barta JA, Powell CA, Wisnivesky JP. Global Epidemiology of Lung Cancer. Ann Glob Health. 2019;85(1).
    4. van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet. 2011;378(9804):1741-55.
    5. Pesch B, Kendzia B, Gustavsson P, Jockel KH, Johnen G, Pohlabeln H, et al. Cigarette smoking and lung cancer--relative risk estimates for the major histological types from a pooled analysis of case-control studies. Int J Cancer. 2012;131(5):1210-9.
    6. Ganti AKP, Loo BW, Bassetti M, Blakely C, Chiang A, D'Amico TA, et al. Small Cell Lung Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021;19(12):1441-64.
    7. Wang S, Zimmermann S, Parikh K, Mansfield AS, Adjei AA. Current Diagnosis and Management of Small-Cell Lung Cancer. Mayo Clin Proc. 2019;94(8):1599-622.
    8. Ko J, Winslow MM, Sage J. Mechanisms of small cell lung cancer metastasis. EMBO Mol Med. 2021;13(1):e13122.
    9. Zhang J, Zhang H, Zhang L, Li D, Qi M, Zhang L, et al. Single-Cell Transcriptome Identifies Drug-Resistance Signature and Immunosuppressive Microenvironment in Metastatic Small Cell Lung Cancer (Advanced Genetics 2/03). Adv Genet (Hoboken). 2022;3(2):2270021.
    10. Li X, Enzerra M, Smith DA, Rahnemai-Azar AA, Kikano E, Ramaiya NH. Lesser Known Facts of Small Cell Lung Cancer. J Comput Assist Tomogr. 2019;43(4):584-91.
    11. Owen DH, Giffin MJ, Bailis JM, Smit MD, Carbone DP, He K. DLL3: an emerging target in small cell lung cancer. J Hematol Oncol. 2019;12(1):61.
    12. Rodriguez-Canales J, Parra-Cuentas E, Wistuba, II. Diagnosis and Molecular Classification of Lung Cancer. Cancer Treat Res. 2016;170:25-46.
    13. Vincent T. Devita (Editor) SHE, Steven A. Rosenberg (Editor). Cancer: Principles and Practice of Oncology - Hardcover 2001. 671–700 p.
    14. Ott PA, Elez E, Hiret S, Kim DW, Morosky A, Saraf S, et al. Pembrolizumab in Patients With Extensive-Stage Small-Cell Lung Cancer: Results From the Phase Ib KEYNOTE-028 Study. J Clin Oncol. 2017;35(34):3823-9.
    15. Horn L, Mansfield AS, Szczesna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N Engl J Med. 2018;379(23):2220-9.
    16. Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat Rev Dis Primers. 2021;7(1):3.
    17. Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44(10):1104-10.
    18. Zhou H, Hu Y, Luo R, Zhao Y, Pan H, Ji L, et al. Multi-region exome sequencing reveals the intratumoral heterogeneity of surgically resected small cell lung cancer. Nat Commun. 2021;12(1):5431.
    19. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47-53.
    20. Dammert MA, Bragelmann J, Olsen RR, Bohm S, Monhasery N, Whitney CP, et al. MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat Commun. 2019;10(1):3485.
    21. Duffy MJ, O'Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154.
    22. Llombart V, Mansour MR. Therapeutic targeting of "undruggable" MYC. EBioMedicine. 2022;75:103756.
    23. Dauch D, Rudalska R, Cossa G, Nault JC, Kang TW, Wuestefeld T, et al. A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat Med. 2016;22(7):744-53.
    24. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N, et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell. 2009;15(1):67-78.
    25. Silva A, Wang J, Lomahan S, Tran TA, Grenlin L, Suganami A, et al. Aurora kinase A is a possible target of OSU‑03012 to destabilize MYC family proteins. Oncol Rep. 2014;32(3):901-5.
    26. Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C, Charron E, et al. Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell. 2014;26(3):414-27.
    27. Niu H, Manfredi M, Ecsedy JA. Scientific Rationale Supporting the Clinical Development Strategy for the Investigational Aurora A Kinase Inhibitor Alisertib in Cancer. Front Oncol. 2015;5:189.
    28. Chi YH, Yeh TK, Ke YY, Lin WH, Tsai CH, Wang WP, et al. Discovery and Synthesis of a Pyrimidine-Based Aurora Kinase Inhibitor to Reduce Levels of MYC Oncoproteins. J Med Chem. 2021;64(11):7312-30.
    29. Liewer S, Huddleston A. Alisertib: a review of pharmacokinetics, efficacy and toxicity in patients with hematologic malignancies and solid tumors. Expert Opin Investig Drugs. 2018;27(1):105-12.
    30. Alisertib_DrugClinicalTrials [Internet]. 2023. Available from: https://intranet.nhri.edu.tw/,DanaInfo=login.globaldata.com,SSL+.
    31. O'Connor OA, Ozcan M, Jacobsen ED, Roncero JM, Trotman J, Demeter J, et al. Randomized Phase III Study of Alisertib or Investigator's Choice (Selected Single Agent) in Patients With Relapsed or Refractory Peripheral T-Cell Lymphoma. J Clin Oncol. 2019;37(8):613-23.
    32. Owonikoko TK, Niu H, Nackaerts K, Csoszi T, Ostoros G, Mark Z, et al. Randomized Phase II Study of Paclitaxel plus Alisertib versus Paclitaxel plus Placebo as Second-Line Therapy for SCLC: Primary and Correlative Biomarker Analyses. J Thorac Oncol. 2020;15(2):274-87.
    33. de Sousa VML, Carvalho L. Heterogeneity in Lung Cancer. Pathobiology. 2018;85(1-2):96-107.
    34. Wadowska K, Bil-Lula I, Trembecki L, Sliwinska-Mosson M. Genetic Markers in Lung Cancer Diagnosis: A Review. Int J Mol Sci. 2020;21(13).
    35. Chang CP, Yeh TK, Chen CT, Wang WP, Chen YT, Tsai CH, et al. Discovery of a Long Half-Life AURKA Inhibitor to Treat MYC-Amplified Solid Tumors as a Monotherapy and in Combination with Everolimus. Mol Cancer Ther. 2024;23(6):766-79.
    36. Tagal V, Roth MG. Loss of Aurora Kinase Signaling Allows Lung Cancer Cells to Adopt Endoreplication and Form Polyploid Giant Cancer Cells That Resist Antimitotic Drugs. Cancer Res. 2021;81(2):400-13.
    37. Ramkumar K, Tanimoto A, Della Corte CM, Stewart CA, Wang Q, Shen L, et al. Targeting BCL2 Overcomes Resistance and Augments Response to Aurora Kinase B Inhibition by AZD2811 in Small Cell Lung Cancer. Clin Cancer Res. 2023;29(16):3237-49.
    38. Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, et al. Cells Lacking the RB1 Tumor Suppressor Gene Are Hyperdependent on Aurora B Kinase for Survival. Cancer Discov. 2019;9(2):230-47.
    39. Gong X, Du J, Parsons SH, Merzoug FF, Webster Y, Iversen PW, et al. Aurora A Kinase Inhibition Is Synthetic Lethal with Loss of the RB1 Tumor Suppressor Gene. Cancer Discov. 2019;9(2):248-63.
    40. Yang FL, Chen X, Zheng F, Liu XX, Sun N, Li RQ, et al. [Targeting microRNA-125b inhibited the metastasis of Alisertib resistance cells through mediating p53 pathway]. Zhonghua Zhong Liu Za Zhi. 2023;45(6):499-507.
    41. Ciaccio MF, Wagner JP, Chuu CP, Lauffenburger DA, Jones RB. Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods. 2010;7(2):148-55.
    42. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
    43. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50.
    44. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-73.
    45. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32(Database issue):D258-61.
    46. Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91-101; discussion -3, 19-28, 244-52.
    47. Hay JG, Shapiro N, Sauthoff H, Heitner S, Phupakdi W, Rom WN. Targeting the replication of adenoviral gene therapy vectors to lung cancer cells: the importance of the adenoviral E1b-55kD gene. Hum Gene Ther. 1999;10(4):579-90.
    48. Tian Y, Li Q, Yang Z, Zhang S, Xu J, Wang Z, et al. Single-cell transcriptomic profiling reveals the tumor heterogeneity of small-cell lung cancer. Signal Transduct Target Ther. 2022;7(1):346.
    49. Stewart CA, Gay CM, Xi Y, Sivajothi S, Sivakamasundari V, Fujimoto J, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Cancer. 2020;1:423-36.
    50. Herzog BH, Devarakonda S, Govindan R. Overcoming Chemotherapy Resistance in SCLC. J Thorac Oncol. 2021;16(12):2002-15.
    51. Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ, Spainhower KB, et al. MYC Drives Temporal Evolution of Small Cell Lung Cancer Subtypes by Reprogramming Neuroendocrine Fate. Cancer Cell. 2020;38(1):60-78 e12.
    52. Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, et al. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer. 2024;23(1):41.
    53. Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19(5):289-97.
    54. Poirier JT, George J, Owonikoko TK, Berns A, Brambilla E, Byers LA, et al. New Approaches to SCLC Therapy: From the Laboratory to the Clinic. J Thorac Oncol. 2020;15(4):520-40.
    55. Lantuejoul S, Fernandez-Cuesta L, Damiola F, Girard N, McLeer A. New molecular classification of large cell neuroendocrine carcinoma and small cell lung carcinoma with potential therapeutic impacts. Transl Lung Cancer Res. 2020;9(5):2233-44.
    56. Mollaoglu G, Guthrie MR, Bohm S, Bragelmann J, Can I, Ballieu PM, et al. MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer Cell. 2017;31(2):270-85.
    57. Baine MK, Hsieh MS, Lai WV, Egger JV, Jungbluth AA, Daneshbod Y, et al. SCLC Subtypes Defined by ASCL1, NEUROD1, POU2F3, and YAP1: A Comprehensive Immunohistochemical and Histopathologic Characterization. J Thorac Oncol. 2020;15(12):1823-35.
    58. McColl K, Wildey G, Sakre N, Lipka MB, Behtaj M, Kresak A, et al. Reciprocal expression of INSM1 and YAP1 defines subgroups in small cell lung cancer. Oncotarget. 2017;8(43):73745-56.
    59. Li Y, Li X, Pu J, Yang Q, Guan H, Ji M, et al. c-Myc Is a Major Determinant for Antitumor Activity of Aurora A Kinase Inhibitor MLN8237 in Thyroid Cancer. Thyroid. 2018;28(12):1642-54.
    60. Beltran H, Oromendia C, Danila DC, Montgomery B, Hoimes C, Szmulewitz RZ, et al. A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clin Cancer Res. 2019;25(1):43-51.
    61. Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer. 2018;17(1):115.
    62. Bretones G, Acosta JC, Caraballo JM, Ferrandiz N, Gomez-Casares MT, Albajar M, et al. SKP2 oncogene is a direct MYC target gene and MYC down-regulates p27(KIP1) through SKP2 in human leukemia cells. J Biol Chem. 2011;286(11):9815-25.
    63. Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, et al. Wnt/beta-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med. 2024;22(1):565.
    64. Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, et al. Wnt/beta-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 2024;17(1):46.
    65. Du B, Shim JS. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules. 2016;21(7).
    66. Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. Cell Regen. 2023;12(1):37.
    67. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192-205.
    68. Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J. 2012;31(12):2714-36.
    69. Bem J, Brozko N, Chakraborty C, Lipiec MA, Kozinski K, Nagalski A, et al. Wnt/beta-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind. FEBS Lett. 2019;593(13):1654-74.
    70. Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767-79.
    71. Haddad TC, Suman VJ, D'Assoro AB, Carter JM, Giridhar KV, McMenomy BP, et al. Evaluation of Alisertib Alone or Combined With Fulvestrant in Patients With Endocrine-Resistant Advanced Breast Cancer: The Phase 2 TBCRC041 Randomized Clinical Trial. JAMA Oncol. 2023;9(6):815-24.
    72. Melichar B, Adenis A, Lockhart AC, Bennouna J, Dees EC, Kayaleh O, et al. Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol. 2015;16(4):395-405.
    73. Kappel; CSKMRRMKJDEGSLJGZMLGGMBJ. Abstract 5332: ST316, a clinical peptide antagonist of beta-catenin, induces anti-tumor immune responses by multiple mechanisms of action. Cancer Research. 2024;84(6 Supplement):5332.
    74. ClinicalTrials.gov. A Phase 1/2 Open-Label Study of ST316, a β-Catenin Antagonist, in Advanced Solid Tumors. ClinicalTrials.gov2024.

    QR CODE